• Title/Summary/Keyword: catalytic combustor

Search Result 70, Processing Time 0.028 seconds

Development of a Catalytic Combustor for DPF Regeneration of In-use Light Duty Diesel Vehicles (소형 경유 운행차의 매연여과장치 재생용 촉매연소기 개발에 관한 연구)

  • Kim, Hong-Suk;Choi, Hyun-Ha;Cho, Gyu-Baek;Jeong, Young-Il;Cho, Sung-Ho;Park, Jong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.168-175
    • /
    • 2008
  • In-use light duty diesel vehicles are considered as one of major sources of particulate emissions in many cities, and the start of the retrofit program for the light duty diesel vehicles is expected in near future in Korea. One of the problems of the retrofit of the light duty diesel vehicles is that the exhaust gas temperature is too low to apply passive regeneration DPF systems. This study introduces a catalytic combustor as a new active DPF regeneration technology. This study shows the principle and characteristics of DPF regeneration by the catalytic combustor and suggests it's proper control method for better regeneration.

Performance Analysis of Off-Gas/Syngas Combustor for Thermal Management of High Temperature Fuel Cell System (고온형 연료전지 열관리를 위한 배기가스 연소기 성능시험)

  • Lee, Sang-Min;Lee, Youn-Hwa;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Anode off-gas of high temperature fuel cell still contains combustible components such as hydrogen, carbon monoxide and hydrocarbon. In this study, a catalytic combustor has been applied to the high temperature fuel cell so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study is designed to perform the experimental investigation on the combustion characteristics of the three commercial catalysts with a different composition. Screening tests with three catalysts are preceded before the performance examination since it is necessary to determine the most suitable catalyst for design configuration of the catalytic combustor. The performance analysis shows that methane conversion rate strongly depends on gas hourly space velocity (GHSV) as well as inlet gas temperature. Additionally, the GSHV optimization results show that the optimum GHSV will be in the range between 18,000 $hr^{-1}$ and 36,000 $hr^{-1}$. It is also shown that the minimum inlet temperature of catalytic reaction of methane is from $100^{\circ}C$ to $150^{\circ}C$.

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF

A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors (MCFC 배가스용 촉매연소기 연소특성에 관한 연구)

  • Lee, Sang Min;Lee, Younhwa;Ahn, Kook Young;Park, In-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF

Investigation on the Relationship between Mass Transfer and Reaction within the Washcoat of Monolith Type Micro-scale Catalytic Combustor (모노리스 타입 마이크로 촉매 연소기의 담층 내부 물질전달 및 반응 관계에 관한 연구)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • The relationship between mass transfer and reaction within the washcoat is investigated in a monolith type micro-scale Pt-catalytic combustor. Nondimensionalized balance equation of butane is applied in a simplified washcoat geometry having the shape of slab. Both Thiele modulus and effectiveness factor are considered to compare reaction rate and diffusion rate according to the operation temperature and the diameter of alumina nano-pores. The effect of reaction becomes stronger as the temperature increases, while the effect of diffusion becomes relatively dominant as the diameter of nano-pores increases. From the analysis of butane distribution within the washcoat, design criterion for the thickness of washcoat is discussed.

Fabrication and Performance Test of MEMS Catalytic Combustors Using Photosensitive Glass Wafer (감광유리를 이용한 MEMS 촉매 연소기의 제작 및 성능 평가)

  • Jin, Jung-Kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.237-242
    • /
    • 2009
  • MEMS catalytic combustors were fabricated to use in micro-power sources as a heat source. The combustor was fabricated by photolithography and anisotropic wet etching of photosensitive glass wafers. Two different catalyst loading methods were used to complete the fabrication of the combustors. For thin film type, the $Al_2O_3$ was washcoated on the surface of the combustion chamber as a catalyst support, and for packed-bed type, ceramic foam was inserted after Pt was coated. The volume of the combustors was 1.8 $cm^3$ and 16W of heat was generated using the fabricated combustors with hydrogen. The energy density of combustor was about 8.9 W/$cm^3$.

NOx Reduction with Secondary Air and Fuel in a Catalytic Combustor (촉매연소기에서 2단 공급공기와 연료가 NOx 저감에 미치는 연구)

  • 정진도;이보영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.541-549
    • /
    • 2003
  • A basic experimental study was conducted in order to find the optimum combustion control technology to decrease the thermal NO$_{x}$, by applying the catalytic combustion method with natural gas. NO$_{x}$ emission increased with increasing space velocity due to temperature rising in the furnace. In order to overcome the low resistance to high temperature, secondary air was supplied to the CST combustor. The following secondary fuel formed combustible mixture in part, which resulted in steep increase of the exiting temperature of the 2nd catalyst bed. It led to the more generator of NO$_{x}$, 30∼60% of the 1 st catalyst bed. It might be due to the potential increase of thermal NO$_{x}$.

Feasibility Study of Low NOx Combustion based on FGR using Plasma Reformer (플라즈마를 이용한 FGR 기반 저 NOx 연소 타당성 연구)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yun, Jin-Han;Kim, Dong-Hyun;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformer was developed, and was applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer was to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator was enough 100 lpm to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen was added into the fuel supplied to the combustor. Test results showed that the addition of 25% hydrogen and 30% FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique developed in the present study showed good potential to replace $NH_3$ SCR technique, especially in the small-scale combustor applications.

  • PDF

Plasma Reformer for Low NOx Combustion (저 NOx 연소를 위한 플라즈마 개질기)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yoon, Jin-Han;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.187-190
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformers has been developed, and has been applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer is to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator is 100 lpm that is sufficient to be used to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen has been added into the fuel supplied to the combustor. Test results shows that 25 % addition of hydrogen and 30 % FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique proposed in the present study shows good potential to replace $NH_3$ SCR technique, especially in the case of small-scale combustor applications.

  • PDF

A Study on the Modeling of Pt-Catalyzed Reaction and the Characteristics of Mass Transfer in a Micro-Scale Combustor (마이크로 스케일 연소기의 백금 촉매 반응 모델링과 물질 전달 특성에 대한 연구)

  • Lee, Gwang-Goo;Suzuki, Yuji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.870-877
    • /
    • 2008
  • Numerical analysis is applied to model Pt-catalyzed reaction in a micro-scale combustor fueled by butane. The reaction constants of catalytic oxidation are determined from plug flow model with the experimental data. Orders of magnitude between the chemical reaction rate and the mass transfer rate are carefully compared to reveal which mechanism plays a dominant role in the total fuel conversion rate. For various conditions of fuel flow rate and surface temperature, the profiles of Sherwood number are investigated to study the characteristics of the mass transport phenomena in the micro-tube combustor.