DOI QR코드

DOI QR Code

Investigation on the Relationship between Mass Transfer and Reaction within the Washcoat of Monolith Type Micro-scale Catalytic Combustor

모노리스 타입 마이크로 촉매 연소기의 담층 내부 물질전달 및 반응 관계에 관한 연구

  • Received : 2015.05.15
  • Accepted : 2015.06.18
  • Published : 2015.06.30

Abstract

The relationship between mass transfer and reaction within the washcoat is investigated in a monolith type micro-scale Pt-catalytic combustor. Nondimensionalized balance equation of butane is applied in a simplified washcoat geometry having the shape of slab. Both Thiele modulus and effectiveness factor are considered to compare reaction rate and diffusion rate according to the operation temperature and the diameter of alumina nano-pores. The effect of reaction becomes stronger as the temperature increases, while the effect of diffusion becomes relatively dominant as the diameter of nano-pores increases. From the analysis of butane distribution within the washcoat, design criterion for the thickness of washcoat is discussed.

Keywords

References

  1. J. Vican, B. F. Gajdeczko, F. L. Dryer, D. L. Milius, I. A. Aksay, R. A. Yetter, Development of a microreactor as a thermal source for microelectromechanical systems power generation, Proc. Combust. Inst., 29 (2002) 909-916.
  2. X. Wang, J. Zhu, H. Bau, R. J. Gorte, Fabrication of micro-reactors using tape-casting methods, Catal. Letters, 77 (2001) 173-177. https://doi.org/10.1023/A:1013236306883
  3. Y. Suzuki, J. Saito, N. Kasagi, Development of micro catalytic combustor with Pt/$Al_2O_3$ thin films, JSME Int. J. B, 47 (2004) 522-527. https://doi.org/10.1299/jsmeb.47.522
  4. G. A. Boyarko, C. J. Sung, S. J. Schneider, Catalyzed combustion of hydrogen oxygen in platinum tubes for micro-propulsion applications, Proc. Combust. Inst., 30 (2005) 2481-2488.
  5. T. Okamasa, G. G. Lee, Y. Suzuki, N. Kasagi, S. Matsuda, Micro Catalytic Combustor Using High-Precision Ceramic Tape Casting, J. Micromech. and Microeng., 16(9) (2006) S198-S205. https://doi.org/10.1088/0960-1317/16/9/S05
  6. G. G. Lee, Y. Suzuki, A Study on the modeling of Pt-catalyzed reaction and the characteristics of mass transfer in a micro-scale combustor, Trans. Korea Soc. Mech. Eng. B, 32(11) (2008) 870-877. https://doi.org/10.3795/KSME-B.2008.32.11.870
  7. Y. Ju, K. Maruta, Microscale combustion: Technology development and fundamental research, Prog. Energy Combust. Sci. 37 (2011) 669-715. https://doi.org/10.1016/j.pecs.2011.03.001
  8. D. C. Walther, J. Ahn, Advances and challenges in the development of power-generation systems at small scales, Prog. Energy Combust. Sci. 37 (2011) 583-610. https://doi.org/10.1016/j.pecs.2010.12.002
  9. G. G. Lee, Y. Suzuki, Design criterion for the size of micro-scale Pt-catalytic combustor in respect of heat release rate, J. Korean Soc. Combust., 19(4) (2014) 49-55. https://doi.org/10.15231/jksc.2014.19.4.049
  10. R. E. Hayes, B. Lui, R. Moxom, M. Votsmeier, The effect of washcoat geometry on mass transfer in monolith reactors, Chem. Eng. Sci., 59 (2004) 3169-3181. https://doi.org/10.1016/j.ces.2004.05.002
  11. R. E. Hayes, B. Lui, M. Votsmeier, Calculating effectiveness factors in non-uniform washcoat shapes, Chem. Eng. Sci., 60 (2005) 2037-2050. https://doi.org/10.1016/j.ces.2004.11.041
  12. R. Prasad, L. A. Kennedy, E. Ruckenstein, Catalytic combustion, Catal. Rev. Sci. Eng., 26 (1984) 1-58. https://doi.org/10.1080/01614948408078059
  13. R. Aris, On shape factors for irregular particles-I. Chem. Eng. Sci., 6 (1957) 262-268. https://doi.org/10.1016/0009-2509(57)85028-3
  14. R. K. Sharma, D. L. Cresswell, E. J. Newson, Effective diffusion coefficients and tortuosity factors for commercial catalysts, Ind. Eng. Chem. Res., 30(7) (1991) 1428-1433. https://doi.org/10.1021/ie00055a004
  15. D. Papadias, L. Edsberg, P. Bjornbom, Simplified method for effectiveness factor calculations in irregular geometries of washcoats, Chem. Eng. Sci., 55 (2000) 1447-1459. https://doi.org/10.1016/S0009-2509(99)00375-9
  16. R. E. Hayes, S. T. Kolaczkowski, P. K. C. Li, S. Awdry, Evaluating the effective diffusivity of methane in the washcoat of a honeycomb monolith, Appl. Catal. B, 25 (2000) 93-104. https://doi.org/10.1016/S0926-3373(99)00122-8
  17. M. Bhattacharya, M. P. Harold, V. Balakotaiah, Mass-transfer coefficients in washcoated monoliths, AIChE J., 50 (2004) 2939-2955. https://doi.org/10.1002/aic.10212
  18. S. Y. Joshi, M. P. Harold, V. Balakotaiah, Overall mass transfer coefficients and controlling regimes in catalytic monoliths, Chem. Eng. Sci., 65 (2010) 1729-1747. https://doi.org/10.1016/j.ces.2009.11.021