• Title/Summary/Keyword: catalyst support

Search Result 365, Processing Time 0.026 seconds

A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports (담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구)

  • Kim, Sung Su;Park, Kwang Hee;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.437-442
    • /
    • 2009
  • In this work, thermal shock and simultaneous removal reaction for NOx, soot over Pt catalysts using $TiO_2$, $Al_2O_3$ as support were studied. The catalytic reaction test for NOx and soot were also performed independently and simultaneously, as a result, it showed different NOx removal efficiency and soot oxidation rate according to support and phase, and the onset temperature of soot oxidation has correlation to NOx removal efficiency for the catalyst. The onset temperature of soot oxidation shifted to lower temperature by generated $NO_2$ at the simultaneous reaction for NOx and soot. Also Pt/$TiO_2$ catalyst is more affected than Pt/$Al_2O_3$ on NOx removal efficiency caused by thermal shock while Pt sintering effect induced to reduce the performance on soot oxidation rate for all catalysts.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity (고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성)

  • Jo, Hyun-Gi;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell (NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰)

  • Shin, Jung-Hee;Lim, Seong-Yop;Kim, Sang-Kyung;Peck, Dong-Hyun;Lee, Bung-Rok;Jung, Doo-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.769-774
    • /
    • 2011
  • Porous carbon nanofibers(CNF) were synthesized via NaOH activation at 700~$900^{\circ}C$, and the porous CNF-supported PtRu catalysts were evaluated for the anode in direct methanol fuel cells. The change of surface characteristics by NaOH activation was examined by analyses of the specific surface area and pore size distribution. The morphological and structural modification was investigated under scanning electron microscopy. The activity of catalysts supported on porous CNFs was examined by cyclic voltammograms and single cell tests. The pore formation on CNF by the NaOH activation was discussed, concerning the catalyst activity, when they were applied as catalyst supports.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

Optimization of Cu/CeO2 Catalyst for Single Stage Water-Gas Shift Reaction: CeO2 Production Using Cerium Hydroxy Carbonate Precursor and Selection of Optimal Cu Loading (단일 수성가스 전이 반응용 Cu/CeO2 촉매 최적화: 수산화탄산세륨 전구체를 이용한 CeO2 제조 및 최적 Cu 담지량 선정)

  • HEO YU-SEUNG;JEONG, CHANG-HOON;PARK, MIN-JU;KIM, HAK-MIN;KANG, BOO MIN;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • In this study, CeO2 support is synthesized from cerium hydroxy carbonate prepared using precipitation/digestion method using KOH and K2CO3 as the precipitants. The Cu was impregnated to CeO2 support with the different loading (Cu loading=10-40 wt. %). The prepared Cu/CeO2 catalysts were applied to a single stage water gas shift (WGS) reaction. Among the prepared catalysts, the 20Cu/CeO2 catalyst contained 20 wt.% of Cu showed the highest CO conversion (Xco=68% at 400℃). This result was mainly due to a large amount of active sites. In addition, the activity of the 20 Cu/CeO2 catalyst was maintained without being deactivated for 100 hours because of the strong interaction between Cu and CeO2. Therefore, it was confirmed that 20 Cu/CeO2 is a suitable catalyst for a single WGS reaction.

Characterization of NOx Reduction on Filter Bag Support System at Low Temperature using Powder Type MnOx and V2O2/TiO2 Catalysts (분말형 MnOx와 V2O2/TiO2 촉매를 이용한 저온영역의 백필터 공정에서 질소산화물 제거 특성)

  • Kim, Byung-Hwan;Kim, Jeong-Heon;Kang, Pil-Sun;Yoo, Seung-Kwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this study, the selective catalytic reduction of $NO_x$ with ammonia was carried out in a filter bag support reactor. The experiments were performed by powder type $MnO_x$ and $V_2O_5$/$TiO_2$ catalyst at low temperature between 130 and $250^{\circ}C$. Also, the effect of $SO_2$ and $H_2O$ on the NO conversion was investigated under our test conditions. The powder type catalysts were analyzed by X-ray photoelectron spectrum (XPS), X-ray diffraction(XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was observed that NO removal efficiency of the powder type $V_2O_5$/$TiO_2$ catalyst was 85% at low temperature($200^{\circ}C$) under presence of oxygen and that of $MnO_x$ was 50% at the same condition. The powder type $V_2O_5$/$TiO_2$ catalyst, in conclusion, was found to be available for SCR reaction in a filter bag support system.

Methane Conversion over Supported Lead Oxide Catalysts (담지된 납산화물 촉매상에서 메탄의 전환반응)

  • Jang Jong-San;Park Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.147-156
    • /
    • 1992
  • Supported lead oxide catalysts were prepared by using ${\alpha}-,{\beta}-{\gamma}$-alumina, and MgO as a support. Among the supported lead oxide catalysts, MgO-supported catalyst showed the highest $C_2^+$ hydrocarbon selectivity for the methane conversion into $C_2^+$ hydrocarbons, but ${\gamma}$-alumina-supported PbO catalyst gave the highest $CO_2$ selectivity. And ${\alpha}$-alumina-supported catlyst showed the midium activity, whereas ${\beta}$-alumina-supported catalyst gave little activity. These reaction characteristics seemed to be largely dependent on the acticity of lattice oxygens in supported catalysts, which would be influnto be largely dependent on the activity of lattice oxygens in supported catalysts, which would be influenced in the interaction between the supports and lead oxides and the properties of supports. Especially, much higher ration of (002)/(111) peak intensities for PbO phase on MgO support than on the other supports in X-ray diffraction analysis was considered to be ab evidence that methane oxidative coupling of methane might be so-called structure-sensitive reaction, and this seemed to be an example of surface oxide-support interaction (SOSI) in the oxidative coupling reaction.

  • PDF