DOI QR코드

DOI QR Code

Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell

NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰

  • Shin, Jung-Hee (Fuel Cell Research Center, Korea Institute of Energy Research(KIER)) ;
  • Lim, Seong-Yop (Fuel Cell Research Center, Korea Institute of Energy Research(KIER)) ;
  • Kim, Sang-Kyung (Fuel Cell Research Center, Korea Institute of Energy Research(KIER)) ;
  • Peck, Dong-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research(KIER)) ;
  • Lee, Bung-Rok (Fuel Cell Research Center, Korea Institute of Energy Research(KIER)) ;
  • Jung, Doo-Hwan (Fuel Cell Research Center, Korea Institute of Energy Research(KIER))
  • 신정희 (한국에너지기술연구원 연료전지연구단) ;
  • 임성엽 (한국에너지기술연구원 연료전지연구단) ;
  • 김상경 (한국에너지기술연구원 연료전지연구단) ;
  • 백동현 (한국에너지기술연구원 연료전지연구단) ;
  • 이병록 (한국에너지기술연구원 연료전지연구단) ;
  • 정두환 (한국에너지기술연구원 연료전지연구단)
  • Published : 2011.12.01

Abstract

Porous carbon nanofibers(CNF) were synthesized via NaOH activation at 700~$900^{\circ}C$, and the porous CNF-supported PtRu catalysts were evaluated for the anode in direct methanol fuel cells. The change of surface characteristics by NaOH activation was examined by analyses of the specific surface area and pore size distribution. The morphological and structural modification was investigated under scanning electron microscopy. The activity of catalysts supported on porous CNFs was examined by cyclic voltammograms and single cell tests. The pore formation on CNF by the NaOH activation was discussed, concerning the catalyst activity, when they were applied as catalyst supports.

NaOH 활성화법을 이용하여 다공성 탄소나노섬유(carbon nanofibers; 이하 CNF)를 온도 범위 700~$900^{\circ}C$에서 합성하였고, 상기 제조된 다공성 CNF를 담지체로 하여 직접메탄올 연료전지의 연료극용 촉매를 제조하고 평가하였다. NaOH 활성화에 의한 CNF 표면 특성의 변화를 비표면적 및 기공 크기 분포 자료를 통하여 조사하였고, 형상 및 구조의 변화를 전자현미경을 통하여 관찰하였다. 활성화 CNF에 담지된 촉매의 활성을 메탄올 산화 특성 및 단위전지를 통하여 평가하였다. 본 활성화 방법에 의한 기공의 형성과 이에 담지된 촉매의 활성과의 관계에 대한 고찰을 하였다.

Keywords

References

  1. Maillard, F., Simonov, P. A. and Savinova, E. R., in Carbon Materials for Catalysis, P. Serp and J. L. Figueiredo, eds., John Wiley & Sons, New Jersey(2009).
  2. Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O. and Ryoo, R., "Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles," Nature, 412, 169-172(2001). https://doi.org/10.1038/35084046
  3. Lee, J., Kim, J. and Hyeon, T., "Recent Progress in the Synthesis of Porous Carbon Materials," Advanced Materials, 18, 2073- 2094(2006). https://doi.org/10.1002/adma.200501576
  4. Li, L. and Xing, Y., "Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts," J. Phys. Chem. C, 111, 2803-2808(2007). https://doi.org/10.1021/jp0655470
  5. Li, W., Wang, X., Chen, Z., Waje, M. and Yan, Y., "Pt-Ru Supported on Double-walled Carbon Nanotubes as High-performance Anode Catalysts for Direct Methanol Fuel Cells," J. Phys. Chem. B, 110, 15353-15358(2006). https://doi.org/10.1021/jp0623443
  6. Girishkumar, G., Hall, T. D., Vinodgopal, K. and Kamat, P. V., "Single wall Carbon Nanotube Supports for Portable Direct Methanol Fuel Cells," J. Phys. Chem. B, 110, 107-114 (2006). https://doi.org/10.1021/jp054764i
  7. Steigerwalt, E. S., Deluga, G. A., Cliffel, D. E. and Lukehart, C. M., "A Pt-Ru/graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-methanol Fuel Cell Anode Catalyst," J. Phys. Chem. B, 105, 8097-8101(2001). https://doi.org/10.1021/jp011633i
  8. Tsuji, M., Kubokawa, M., Yano, R., Miyamae, N., Tsuji, T., Jun, M. S., Hong, S., Lim, S., Yoon, S. H. and Mochida, I., "Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-polyol Method and Their Application to Fuel Cells," Langmuir, 23, 387-390(2007). https://doi.org/10.1021/la062223u
  9. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Elsevier, Oxford(2000).
  10. Lim, S., Jung, D., Yoon, S. H., Mochida, I., "Carbon Materials as Catalysts," Carbon Letters, 9(1), 47-60(2008). https://doi.org/10.5714/CL.2008.9.1.047
  11. Yoon, S. H., Lim, S., Song, Y., Ota, Y., Qiao, W., Tanaka, A. and Mochida, I., "KOH Activation of Carbon Nanofibers," Carbon, 42, 1723-1729(2004). https://doi.org/10.1016/j.carbon.2004.03.006
  12. Ahmadpour, A. and Do, D. D., "The Preparation of Active Carbons from Coal by Chemical and Physical Activation," Carbon, 34, 471-479(1996). https://doi.org/10.1016/0008-6223(95)00204-9
  13. Otowa, T., Nojima, Y. and Miyazaki, T., "Development of KOH Activated High Surface Area Carbon and Its Application to Drinking Water Purification," Carbon, 35, 1315-1319(1997). https://doi.org/10.1016/S0008-6223(97)00076-6
  14. Lillo-Rodenas, M. A., Cazorla-Amoros, D. and Linares-Solano, A., "Understanding Chemical Reactions Between Carbons and NaOH and KOH: An Insight into the Chemical Activation Mechanism," Carbon, 41, 267-275(2003). https://doi.org/10.1016/S0008-6223(02)00279-8
  15. Jung, M. K., Kim, S. K., Jung, D. H., Peck, D. H., Shin, J. H., Shul, Y. G. and Yoon, S. H., "Characteristics of the Catalysts Using Activated Carbon Nanofibers with KOH as the Support of Anode Catalyst for Direct Methanol Fuel Cell," Carbon Letters, 8, 37-42 (2007). https://doi.org/10.5714/CL.2007.8.1.037
  16. Mitani, S., Lee, S. I., Yoon, S. H., Korai, Y. and Mochida, I., "Activation of Raw Pitch Coke with Alkali Hydroxide to Prepare High Performance Carbon for Electric Double Layer Capacitor," J. Power Sources., 133, 298-301(2004). https://doi.org/10.1016/j.jpowsour.2004.01.047
  17. Mitani, S., Lee, S. I., Saito, K., Korai, Y. and Mochida, I., "Contrast Structure and EDLC Performances of Activated Spherical Carbons with Medium and Large Surface Areas," Electrochim. Acta, 51, 5487-5493(2006). https://doi.org/10.1016/j.electacta.2006.02.040
  18. Lee, S. I., Mitani, S., Yoon, S. H., Korai, Y. and Mochida, I., "Preparation of Spherical Activated Carbon with High Electric Double-layer Capacitance," Carbon, 42, 2332-2334(2004). https://doi.org/10.1016/j.carbon.2004.03.026
  19. Park, S.-M., Jung, D.-H., Kim, S.-K., Lim, S., Peck, D. and Hong, W. H., "The Effect of Vapor-grown Carbon Fiber as an Additive to the Catalyst Layer on the Performance of a Direct Methanol Fuel Cell," Electrochim. Acta, 54, 3066-3072(2009). https://doi.org/10.1016/j.electacta.2008.11.066

Cited by

  1. Influence of the Pore Properties on Carbon Dioxide Adsorption of PAN-based Activated Carbon Nanofibers vol.37, pp.5, 2013, https://doi.org/10.7317/pk.2013.37.5.592