• Title/Summary/Keyword: cat robot

Search Result 31, Processing Time 0.025 seconds

Implementation of EtherCAT Slave Module for IEC 61800-based Power Driver System (IEC 61800 기반 파워 드라이버 시스템을 위한 EtherCAT 슬레이브 모듈 구현)

  • Kim, Man-Ho;Park, Jee-Hun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.176-182
    • /
    • 2011
  • Industrial network, often referred to as fieldbus, becomes an indispensable component for intelligent manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices such as sensors, actuators, and controllers, numerous fieldbus protocols have been developed. But, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. As an alternative to fieldbus, the Ethernet (IEEE 802.3) technology is being adapted to the industrial environment. However, the crucial technical obstacle of Ethernet is its non-deterministic behavior that cannot satisfy the real-time requirements. Recently, the EtherCAT protocol becomes a very promising alternative for real-time industrial application due to the elimination of uncertainties in Ethernet. This paper focuses on the implementation of the IEC 61800 based real-time EtherCAT network for multi-axis smart driver. To demonstrate the feasibility of the implemented EtherCAT slave module, its synchronization performance is evaluated on the experimental EtherCAT testbed with a single axis smart driver.

Design of an Autonomous Eating Pet Robot

  • Park, Ch.S.;Choi, B.J.;Park, S.H.;Lee, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.855-858
    • /
    • 2003
  • The trends of recent developed a pet robot which interacts with people are increased gradually. There are a few pet robots that are a robot dog, robot cat, and robot fish. The pet robot is featured that it is possible to sympathize and give pleasure to human. The pet robots express delight, sorrow, surprise, and hunger through the artificial intelligence. Previously, the pet robot has to exchange the battery when it is exhausted. Commercialized robots have a self-recharging function, which express hunger. Robot dog AIBO, SONY in Japan, checks the battery for expressing hunger. They find an energy station for recharge. While operation time of AIBO is 1 hour 30 minutes, recharging time is 2 hours. Recharging time is longer than operation time. During the recharge, they don't operate. We obtain a motivation for eating the battery when find the problem. In this paper, introduce an Autonomous Eating Pet Robot and propose a design for realization. The Autonomous Eating Pet Robot has a function that is the most basic instinct that is finding a food and evacuating.

  • PDF

Subjective Evaluation of Seal Robot at the Japan Cultural Institute in Rome

  • Shibata, Takanori;Wada, Kazuyoshi;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.651-656
    • /
    • 2003
  • This paper describes research on mental commit robot that seeks a different direction from industrial robot, and that is not so rigidly dependent on objective measures such as accuracy and speed. The main goal of this research is to explore a new area in robotics, with an emphasis on human-robot interaction. Mental commit robots provide psychological, physiological, and social effects to human beings through physical interaction. In the previous research, we categorized robots into four categories in terms of appearance. Then, we introduced a cat robot and a seal robot, and evaluated them by interviewing many people. The results showed that physical interaction improved subjective evaluation. Moreover, a priori knowledge of a subject has much influence into subjective interpretation and evaluation of mental commit robot. In this paper, 95 subjects evaluated the seal robot, Paro by questionnaires in an exhibition at the Japan cultural institute in Rome, Italy for 4 days from June 25th to 28th, 2003. This paper reports the results of statistical analysis of evaluation data.

  • PDF

Implementation of Bi-directional Optic EtherCAT Communication Module based on WDM Method (WDM 방식의 양방향 광 이더캣 통신 모듈 구현)

  • Moon, Yong-Seon;Roh, Sang-Hyun;Jo, Kwang-Hun;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.409-415
    • /
    • 2012
  • Recently in industry communication, the efforts that use robot and automation system increased by cooperation with optical communication and industrial Ethernet. In this paper, in order to solve the problem that total network blocking when network fault happens and wiring problem of optical cable, which were big serious disadvantage in industrial optical network systems, we propose bi-directional optical EtherCAT communication technique based on single optical core, which applying WDM method. We describe the content for implementation of WDM bi-directional optical EtherCAT communication module and performance evaluation to verify the performance of related technology as a whole.

Leg Mechanism Design and Control of Bio-inspired Robot for High Speed Legged Locomotion (고속 족형 운동을 위한 생체모사 로봇의 다리 메커니즘 설계 및 제어)

  • Park, Jongwon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.264-269
    • /
    • 2019
  • This paper presents mechanical design and control of a bio-inspired legged robot. To achieve a fast legged running mechanism, a novel linkage leg structure is designed based on hind legs of domestic cats. The skeletomuscular system and parallel leg movement of a cat are analyzed and applied to determine the link parameters. The hierarchical control architecture is designed according to the biological data to generate and modulate desired gaits. The effectiveness of the leg mechanism design and control is verified experimentally. The legged robot runs at a speed of 46 km/h, which is comparatively higher speed than other existing legged robots.

An Implementation of Vector Control of AC Servo Motor based on Optical-EtherCAT Network (광-ETherCAT 네트워크 기반 PMSM의 벡터제어 구현)

  • Kim, Yong-Jin;Kim, Kwang-Heon;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.583-588
    • /
    • 2013
  • In this paper we propose implement technique of vector current control in order to verify performance of an AC servo driver that is able to easy control of motion with multi-axis in the robot. In doing do, we have developed the AC servo driver to driving PMSM, and then we confirm that this driver whether operating or not normally by controlling of vector current. The vector current control was performed at the no load condition in PMSM. Then we compare command control and tracking control. As a result of verification, we recognize we get a satisfactory result.

Running Control of Quadruped Robot Based on the Global State and Central Pattern

  • Kim, Chan-Ki;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.308-313
    • /
    • 2005
  • For a real-time quadruped robot running control, there are many important objectives to consider. In this paper, the running control architecture based on global states, which describe the cyclic target motion, and central pattern is proposed. The main goal of the controller is how the robot can have robustness to an unpredictable environment with reducing calculation burden to generate control inputs. Additional goal is construction of a single framework controller to avoid discontinuities during transition between multi-framework controllers and of a training-free controller. The global state dependent neuron network induces adaptation ability to an environment and makes the training-free controller. The central pattern based approach makes the controller have a single framework, and calculation burden is resolved by extracting dynamic equations from the control loop. In our approach, the model of the quadruped robot is designed using anatomical information of a cat, and simulated in 3D dynamic environment. The simulation results show the proposed single framework controller is robustly performed in an unpredictable sloped terrain without training.

  • PDF

Therapeutic Robot Action Design for ASD Children Using Speech Data (음성 정보를 이용한 자폐아 치료용 로봇의 동작 설계)

  • Lee, Jin-Gyu;Lee, Bo-Hee
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1123-1130
    • /
    • 2018
  • A cat robot for the Autism Spectrum Disorders(ASD) treatment was designed and conducted field test. The designed robot had emotion expressing action through interaction by the touch, and performed a reasonable emotional expression based on Artificial Neural Network(ANN). However these operations were difficult to use in the various healing activities. In this paper, we describe a motion design that can be used in a variety of contexts and flexibly reaction with various kinds of situations. As a necessary element, the speech recognition system using the speech data collection method and ANN was suggested and the classification results were analyzed after experiment. This ANN will be improved through collecting various voice data to raise the accuracy in the future and checked the effectiveness through field test.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method (모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구)

  • 서진호;산북창의;이권순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.