• Title/Summary/Keyword: castration-resistant

Search Result 17, Processing Time 1.337 seconds

Third-line Hormonal Therapy to Treat Prostate Cancer Relapse after Initial and Second-line Hormonal Therapy: Report of 52 Cases and Literature Review

  • Matsumoto, Kazuhiro;Hagiwara, Masayuki;Hayakawa, Nozomi;Tanaka, Nobuyuki;Ito, Yujiro;Maeda, Takahiro;Ninomiya, Akiharu;Nagata, Hirohiko;Nakamura, So
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3645-3649
    • /
    • 2014
  • The aim of this study was to evaluate the efficacy of third-line combined androgen blockade (CAB) therapy for castration-resistant prostate cancer that relapsed after primary and second-line CAB. We retrospectively reviewed the medical records of 52 patients who received first-, second-, and third-line CAB therapy (medical or surgical castration, plus steroidal antiandrogen of chlormadinone acetate, or nonsteroidal antiandrogen of flutamide or bicalutamide). For cumulative analysis, we searched the PubMed database and identified a total of 50 cases published in English. Including our cases, this provided a total of 102 cases for analysis. In our study cohort, 11 cases (21.2%) achieved more than 50% reduction of serum prostate-specific antigen (PSA) on initiation of third-line CAB. We found that third-line CAB with nonsteroidal antiandrogen after second-line CAB with steroidal antiandrogen exhibited favorable results, with a positive response in six of 13 patients (46.2%). Cumulative analysis findings were comparable. Regarding the timing of third-line CAB administration, 15 patients had started at a PSA equal to or less than 4.0 ng/ml, and eight of them (53.3%) showed a positive response to treatment, compared to only three of 37 patients (8.1%) whose PSA at the initiation of third-line therapy was higher than 4.0 ng/ml (p<0.001). We conclude that third-line CAB with nonsteroidal antiandrogen would be particularly useful for patients whose cancer progressed after second-line CAB with steroidal antiandrogen. The timing of treatment seems to be important because the higher the PSA at the start of third-line therapy, the lower the PSA response rate.

The Evaluation of External Radiation Exposure dose rate for Radium-223 Dichloride (Radium-223 Dichloride의 외부 방사선량의 평가)

  • Cho, Seong Wook;Yoon, Seok Hwan;Seung, Jong Min;Kim, Tae Yub;Im, Jeong Jin;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.28-31
    • /
    • 2016
  • Purpose $^{223}Ra-Dichloride$ is used for the medicine of castration-resistant prostate cancer (CRPC) and which emits ${\alpha}-ray$ of 28 Mev that is used for therapy. However $^{223}Ra-Dichloride$ emits ${\beta}-ray$ of 3.6% and ${\gamma}-ray$ of 1.1%(80,156,270 keV) aside from ${\alpha}-ray$ in decay. Therefore we would like to evaluate external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$. Materials and Methods We calculated external radiation expose dose rate using ${\gamma}-constant$ of $^{223}Ra-Dichloride$, $^{99m}Tc$ based on Health physics(2012). $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq were applied. external radiation expose dose rate 15 times from 1m by survey meter. Results ${\gamma}-contant$ of $^{223}Ra$, $^{99m}Tc-MDP$ from 1m distance based on Health physics(2012) is 0.0469, 0.0215. calculated value of external radiation expose dose rate was $16{\mu}Sy$, $34{\mu}Sy$ which activity is $^{223}Ra-Dichloride$ of 3.5 MBq and $^{99m}Tc-MDP$ of 740 MBq from 1 m and measured mean value of 1 m was $0.7{\mu}Sy/h$, $18{\mu}Sy/h$. Conclusion ${\gamma}-constant$ of $^{223}Ra$ is higher than $^{99m}Tc$ based on Health physics(2012). however calculated maximum external radiation expose dose rate of $^{223}Ra-Dichloride$ is lower than $^{99m}Tc$ due to actually used quantity of activity of $^{223}Ra-Dichloride$ is small. measured value of $^{223}Ra-Dichloride$ is also lower than $^{99m}Tc-MDP$. Therefore external radiation expose dose rate of ${\gamma}-ray$ of $^{223}Ra-Dichloride$ is very low.

  • PDF

Dosimetric Analysis of a Phase I Study of PSMA-Targeting Radiopharmaceutical Therapy With [177Lu]Ludotadipep in Patients With Metastatic Castration-Resistant Prostate Cancer

  • Seunggyun Ha;Joo Hyun O;Chansoo Park;Sun Ha Boo;Ie Ryung Yoo;Hyong Woo Moon;Dae Yoon Chi;Ji Youl Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2024
  • Objective: 177Lutetium [Lu] Ludotadipep is a novel prostate-specific membrane antigen targeting therapeutic agent with an albumin motif added to increase uptake in the tumors. We assessed the biodistribution and dosimetry of [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer (mCRPC). Materials and Methods: Data from 25 patients (median age, 73 years; range, 60-90) with mCRPC from a phase I study with activity escalation design of single administration of [177Lu]Ludotadipep (1.85, 2.78, 3.70, 4.63, and 5.55 GBq) were assessed. Activity in the salivary glands, lungs, liver, kidneys, and spleen was estimated from whole-body scan and abdominal SPECT/CT images acquired at 2, 24, 48, 72, and 168 h after administration of [177Lu]Ludotadipep. Red marrow activity was calculated from blood samples obtained at 3, 10, 30, 60, and 180 min, and at 24, 48, and 72 h after administration. Organand tumor-based absorbed dose calculations were performed using IDAC-Dose 2.1. Results: Absorbed dose coefficient (mean ± standard deviation) of normal organs was 1.17 ± 0.81 Gy/GBq for salivary glands, 0.05 ± 0.02 Gy/GBq for lungs, 0.14 ± 0.06 Gy/GBq for liver, 0.77 ± 0.28 Gy/GBq for kidneys, 0.12 ± 0.06 Gy/GBq for spleen, and 0.07 ± 0.02 Gy/GBq for red marrow. The absorbed dose coefficient of the tumors was 10.43 ± 7.77 Gy/GBq. Conclusion: [177Lu]Ludotadipep is expected to be safe at the dose of 3.7 GBq times 6 cycles planned for a phase II clinical trial with kidneys and bone marrow being the critical organs, and shows a high tumor absorbed dose.

Prostatectomy Provides Better Symptom-Free Survival Than Radiotherapy Among Patients With High-Risk or Locally Advanced Prostate Cancer After Neoadjuvant Hormonal Therapy

  • Kim, Sung Han;Song, Mi Kyung;Park, Weon Seo;Joung, Jae Young;Seo, Ho Kyung;Chung, Jinsoo;Lee, Kang Hyun
    • The Korean Journal of Urological Oncology
    • /
    • v.16 no.3
    • /
    • pp.126-134
    • /
    • 2018
  • Purpose: The purpose of this study is to compare the radiation therapy (RT) and radical prostatectomy (RP) of high-risk or locally advanced prostate cancer (PC) patients after neoadjuvant hormonal therapy (NHT). Materials and Methods: This retrospective study evaluated patients underwent RT (42 patients) or RP (152 patients) after NHT at a single center during 2003-2014. Times to biochemical recurrence (BCR), pelvic local recurrence (PLR), metastasis, clinical painful symptom progression (CPSP), castration-resistant PC (CRPC), and overall survival were compared between the RT and RP groups, after adjustment for TN stage, using the Kaplan-Meier method and log-rank test. Results: Significant inter-group differences were observed for age, Gleason score, initial PSA, and clinical and pathological T stages (all p<0.05). During a median follow-up of 71.7 months, the overall incidences of BCR, PLR, metastasis, CPSP, CRPC, and death were 49.5%, 16.5%, 8.3%, 7.7%, 7.7%, and 17.5%, respectively. The median times to BCR were 100 months for RT and 36.2 months for RP (p=0.004), although the median times were not reached for the other outcomes (all p>0.05). The independent predictor of CPSP was RP (hazard ratio, 0.291; p=0.013). Conclusions: Despite significantly different baseline parameters, RP provided better CPSP-free survival than RT among patients with localized high-risk or locally advanced PC.

The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer

  • Luyi Cheng;TianshuoYang;Jun Zhang;Feng Gao;Lingyun Yang;Weijing Tao
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.574-589
    • /
    • 2023
  • Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.

Verification of the Cancer Therapeutic Efficacy of Lutetium-177 Using Gene Expression (유전자 발현을 활용한 루테튬 (177Lu)의 암 치료 효능 검증)

  • Da-Mi Kim;So-Young Lee;Jae-Cheong Lim;KangHyuk Choi
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • Lutetium(177Lu), with its theranostic properties, is one of the most widely used radioisotopes and has a large share of the radiopharmaceutical market due to its many applications and targeted therapeutic research using lutetium-based radiopharmaceuticals. However, lutetium-based radiopharmaceuticals currently approved by the US Food and Drug Administration (FDA) are limited to the indications of gastrointestinal cancer, pancreatic neuroendocrine cancer and metastatic castration-resistant prostate cancer. To overcome these limitations, we aimed to demonstrate the feasibility of expanding the use of lutetium-based radiopharmaceuticals by verifying the availability and therapeutic efficacy of lutetium produced in a research reactor(HANARO). In this study, we confirmed the therapeutic efficacy of lutetium by using cancer cells from different types of cancer. In addition, we selected cancer biomarkers based on characteristics common to various cancer cells and compared and evaluated the therapeutic efficacy of lutetium by regulating the expression of target genes. The results showed that modulation of cancer biomarker gene expression resulted in higher therapeutic efficacy compared to lutetium alone. In conclusion, this study verified the potential use and therapeutic efficacy of lutetium based on the production of a research reactor (HANARO), providing fundamental evidence for the development of lutetium-based radiopharmaceuticals and the expansion of their indications.

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.