• Title/Summary/Keyword: casting

Search Result 3,469, Processing Time 0.025 seconds

Fabrication of Poly(vinyl alcohol)/Cellulose Film by Heterogeneous Saponification (불균일계 비누화를 통한 폴리비닐알코올/셀룰로오스 필름 제조)

  • Tae Young Kim;Mi Kyung Kim;Jinsoo Kim;Jungeon Lee;Jae Hoon Jung;Youngkwon Kim;Tae Hyeon Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.214-220
    • /
    • 2023
  • Poly(vinyl alcohol) (PVA) is a common hydrophilic polymer that is synthesized through the saponification reaction of poly(vinyl ester)-based polymers, mostly using poly(vinyl acetate) (PVAc) as a precursor. The heterogeneous saponification reaction of poly(vinyl ester)-based films leads to PVA films with new surface properties. Cellulose acetate (CA), in which the hydroxyl group of cellulose is replaced by an acetyl group, is a typical cellulose derivative capable of overcoming the low processability of cellulose due to strong hydrogen bonding. In this study, P(VAc/VPi)/CA blended films were prepared by the solvent casting, and then PVA/Cellulose blended films with improved surface properties were prepared by heterogeneous saponification. The structural changes caused by heterogeneous saponification were confirmed by FT-IR analysis, where both saponification and deacetylation reactions occurred in the saponification solution. In addition, the surface property changes were analyzed by FE-SEM and contact angle analyses, and the transmittance changes of the modified films were also assessed.

Distribution Behavior of Solute Element in Al-Mg-Zn Alloy Continuous Cast Billet During Homogenization Treatment (Al-Mg-Zn계 알루미늄 합금 연주 빌렛 균질화처리과정 중 용질원소 거동변화)

  • Myoung-Gyun Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.286-293
    • /
    • 2023
  • In this study, we investigated the microstructural evolution of Al-Mg-Zn aluminum alloy billet during homogenization treatment using OM, SEM, EDS and DSC. There were numerous phases found, such as; AlMgZn, AlMgFe, and AlMgZnSi phases, in the grain of the cast billet. After 6 hours homogenization treatment, Zn was mostly dissolved, whereas, Mg and Si were only partly dissolved. Accordingly, only AlMgFe and AlMgSi remained. After 18 hours, all of the leftover Mg and Si were dissolved, leaving only AlMgFe, which was also found after 24 hours. The results of the alloy design program, JMatPro showed that Mg dissloved more rapidly than Zn. According to the homogenization kinetic equation, Mg and Zn are completely dissolved within 1.9 and 3.5 hours, respectively.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Development of Workplace Risk Assessment System Based on AI Video Analysis

  • Jeong-In Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 2024
  • In this paper, we develop 'the Danger Map' of a workplace to identify risk and harmful factors by analyzing images of each process within the manufacturing plant site using artificial intelligence (AI). We proposed a system that automatically derives 'the risk and safety levels' based on the frequency and intensity derived from this Danger Map in accordance with actual field conditions and applies them to similar manufacturing industries. In particular, in the traditional evaluation method of manually evaluating the risk of a workplace using Excel, the risk level for each risk and harmful factor acquired from the video is automatically calculated and evaluated to ensure safety through the system and calculate the safety level, so that the company can take appropriate actions accordingly. and measures were prepared. To automate safety calculation and evaluation, 'Heinrich's law' was used as a model, and a 5X4 point evaluation scale was calculated for risky behavior patterns. To demonstrate this system, we applied it to a casting factory and were able to save 2 people the time and labor required to calculate safety each month.

Current Use and Issues of Generative AI in the Film Industry (영화산업의 생성형 인공지능(Generative AI) 활용 현황과 문제점)

  • Jong-Guk Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.181-192
    • /
    • 2024
  • With the introduction of generative artificial intelligence(AI) tools such as OpenAI's Sora into the global film industry, including Hollywood, there has been a simultaneous emergence of innovations in film production as well as various crises. These changes are spreading throughout the entire film production process, including scriptwriting, casting, editing, and acting. This study analyzes the impact of AI on the film industry, particularly Hollywood, and explores how this technology might bring about changes in Korean cinema. AI technologies applied in the film industry offer benefits such as reducing production time and costs. However, they also pose threats to many filmmakers and actors who rely on the traditional production methods, leading to ethical and legal issues. In Hollywood blockbuster films, AI technology is used to create realistic visual effects, analyze scripts, and suggest optimal shooting angles. While these applications improve the qualitative level of films, they also reduce the human resources required in traditional film production processes. The impact on the Korean film industry is also noteworthy. Some Korean film production companies are leveraging AI to create films in a more creative and efficient manner. Efforts are being made to analyze audience data using AI and develop storylines that appeal to a larger audience. However, these technological changes are controversial among many Korean filmmakers who prefer traditional production methods. This study provides an in-depth discussion on whether the adoption of AI in the film industry can bring about positive innovation or inevitably lead to crises. It analyzes how AI technology is transforming traditional roles in the film industry and what new opportunities and challenges this change generates within the industry. Additionally. This study highlights the differences in technology adoption between Hollywood and Korean film industry and explores how each industry is embracing these technological changes.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

Risk factors and fisher positioning task during coastal gillnet fishing boat operation using UWB based positioning system (UWB 기반 측위시스템을 이용한 연안자망어선 어선원의 작업위치와 위험요소)

  • Kyung-Jin RYU;Su-Hyung KIM;Kyunghun LEE;Sunghun KIM;Sung-Jae WON;Yoo-Won LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.152-160
    • /
    • 2024
  • We analyzed risk factors of coastal gillnet fishers during fishing process and considered work safety measures to reduce safety accidents during fishing using a UWB (ultra wideband) based positioning system. The static position accuracy of the UWB based positioning system was 45 cm. When entering a port, there is a risk of falling overboard. When casting a net, there was a risk of falling overboard due to being hit by fishing gear or guards, or getting caught in a buoy line or sinker line. When hauling a net, there is a risk of getting caught between fishing gear and net hauler, and the risk of musculoskeletal disorders due to repetitive work over a long period of time. Most safety accidents during work on fishing boats are blamed on human errors of the fisher and skipper, but safety accidents occur due to a mixture of mechanical and equipment factors, work and environmental factors, and management factors in addition to human errors. Therefore, the 4E were presented as countermeasures against the 4M, which are causes of safety accidents, and the proposed measures were used to identify risk factors for operation process, comply with work safety rules, and ensure the wearing of personal protective equipments. We need to reduce safety accidents during work by making it part of our daily routine. These research results can be used in the future for optimal placement of fishing gear and fishing nets in other coastal industries where safety accidents occur frequently.

A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

  • Sujatha Pavan Narayanam;Soubhadra Sen;Kalpana Kumari;Amit Kumar;Usha Pujala;V. Subramanian;S. Chandrasekharan;R. Preetha;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.132-140
    • /
    • 2024
  • In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m3 and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour;Masoud Ajri;Mehrdad Ekhtiari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.211-225
    • /
    • 2024
  • Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.