DOI QR코드

DOI QR Code

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour (Department of Mechanical Engineering, University of Mohaghegh Ardabili) ;
  • Masoud Ajri (Department of Mechanical Engineering, University of Mohaghegh Ardabili) ;
  • Mehrdad Ekhtiari (Department of Mechanical Engineering, University of Mohaghegh Ardabili)
  • Received : 2024.01.14
  • Accepted : 2024.07.09
  • Published : 2024.07.25

Abstract

Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.

Keywords

References

  1. Aghaei, F. and Bahador, H. (2022), "High sensitivity metal-insulator-metal sensor based on ring-hexagonal resonator with a couple of square cavities connected", Physica Scripta.
  2. Ahmed, F., Waqas, M., Shaikh, B., Khan, U., Soomro, A.M., Kumar, S., ... & Choi, K.H. (2022), "Multi-material bio-inspired soft octopus robot for underwater synchronous swimming", J. Bionic Eng., 19(5), 1229-1241. https://doi.org/10.1007/s42235-022-00208-x.
  3. Bazkiaei, A.K., Shirazi, K.H. and Shishesaz, M. (2020), "A framework for model base hyper-elastic material simulation", J. Rub. Res., 23, 287-299. https://doi.org/10.1007/s42464-020-00057-5.
  4. Cacucciolo, V., Renda, F., Poccia, E., Laschi, C. and Cianchetti, M. (2016), "Modelling the nonlinear response of fibre-reinforced bending fluidic actuators", Smart Mater. Struct., 25(10), 105020. https://doi.org/10.1088/0964-1726/25/10/105020.
  5. Chagnon, G., Ohayon, J., Martiel, J.L. and Favier, D. (2017), "Hyperelasticity modeling for incompressible passive biological tissues", Biomechanics of Living Organs, Academic Press.
  6. Charbonne, C., Dhuitte, M.L., Bouziane, K., Chamoret, D., Candusso, D. and Meyer, Y. (2021), "Design of experiments on the effects of linear and hyperelastic constitutive models and geometric parameters on polymer electrolyte fuel cell mechanical and electrical behaviour", Int. J. Hydrogen Energy, 46(26), 13775-13790. https://doi.org/10.1016/j.ijhydene.2021.02.122.
  7. Chen, L., Yang, C., Wang, H., Branson, D.T., Dai, J.S. and Kang, R. (2018), "Design and modeling of a soft robotic surface with hyperelastic material", Mech. Mach. Theory, 130, 109-122. https://doi.org/10.1016/j.mechmachtheory.2018.08.010.
  8. Chen, W., Xiong, C., Liu, C., Li, P. and Chen, Y. (2019), "Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor", Soft Robot., 6(4), 495-506. https://doi.org/10.1089/soro.2018.006.
  9. Destrade, M., Saccomandi, G. and Sgura, I. (2017), "Methodical fitting for mathematical models of rubber-like materials", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 473(2198), 20160811. https://doi.org/10.1098/rspa.2016.0811.
  10. Duran, R. (2018), "Functionally-graded soft robotic actuator", Worcester Polytechnic Institute.
  11. Esmalipour, S. and Ajri, M. (2023), "Modeling and analysis of the bending behavior of soft pneumatic network actuator with hyperelastic models", Amirkabir J. Mech. Eng., 55(8), 1021-1042. https://doi.org/10.22060/mej.2023.22104.7567.
  12. Farooq, M.A., Nimbalkar, S. and Fatahi, B. (2022), "Sustainable applications of tyre-derived aggregates for railway transportation infrastructure", Sustain., 14(18), 11715. https://doi.org/10.3390/su141811715.
  13. Fras, J. and Althoefer, K. (2019), "Soft fiber-reinforced pneumatic actuator design and fabrication: Towards robust, soft robotic systems", Towards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July.
  14. Gharavi, L., Zareinejad, M. and Ohadi, A. (2022), "Dynamic Finite-Element analysis of a soft bending actuator", Mechatron., 81, 102690. https://doi.org/10.1016/j.mechatronics.2021.102690.
  15. Gholipour, A., Ghayesh, M.H., Zander, A. and Mahajan, R. (2018), "Three-dimensional biomechanics of coronary arteries", Int. J. Eng. Sci., 130, 93-114. https://doi.org/10.1016/j.ijengsci.2018.03.002.
  16. Gifari, M.W., Naghibi, H., Stramigioli, S. and Abayazid, M. (2019), "A review on recent advances in soft surgical robots for endoscopic applications", Int. J. Med. Robot. Comput. Assist. Surgery, 15(5), e2010. https://doi.org/10.1002/rcs.2010.
  17. Guan, Q., Sun, J., Liu, Y., Wereley, N.M. and Leng, J. (2020), "Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk", Soft Robot., 7(5), 597-614. https://doi.org/10.1089/soro.2019.0079.
  18. Hernandez, J.A. and Al-Qadi, I.L. (2017), "Tire-pavement interaction modelling: Hyperelastic tire and elastic pavement", Road Mater. Pave. Des., 18(5), 1067-1083. https://doi.org/10.1080/14680629.2016.1206485.
  19. Huang, Y.H., Jakus, A.E., Jordan, S.W., Dumanian, Z., Parker, K., Zhao, L., Patel, P.K. and Shah, R.N. (2019), "Three-dimensionally printed hyperelastic bone scaffolds accelerate bone regeneration in critical-size calvarial bone defects", Plast. Reconstr. Surgery, 143(5), 1397-1407. https://doi.org/10.1097/PRS.0000000000005530.
  20. Jiralerspong, T., Heung, K.H., Tong, R.K. and Li, Z. (2018), "A novel soft robotic glove for daily life assistance", 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 671-676.
  21. Joshi, S. and Paik, J. (2023), "Sensorless force and displacement estimation in soft actuators", Soft Mat., 19(14), 2554-2563. https://doi.org/10.1039/D2SM01197B.
  22. Khodadadi, A., Liaghat, G., Ahmadi, H., Bahramian, A.R., Anani, Y., Razmkhah, O. and Asemeni, S. (2019), "Numerical and experimental study of impact on hyperelastic rubber panels", Iran. Polym. J., 28, 113-122. https://doi.org/10.1007/s13726-018-0682-x.
  23. Kim, H., Na, H., Noh, S., Chang, S., Kim, J., Kong, T., ... & Lee, J. (2024), "Inherently integrated microfiber-based flexible proprioceptive sensor for feedback-controlled soft actuators", npj Flex. Electron., 8(1), 15. https://doi.org/10.1038/s41528-024-00302-6.
  24. Kim, T., De Goes, F. and Iben, H. (2019), "Anisotropic elasticity for inversion-safety and element rehabilitation", ACM Trans. Graph. (TOG), 38(4), 1-15. https://doi.org/10.1145/3306346.3323014.
  25. Laschi, C. and Mazzolai, B. (2016), "Lessons from animals and plants: The symbiosis of morphological computation and soft robotics", IEEE Robot. Auto. Mag., 23(3), 107-114. https://doi.org/10.1109/MRA.2016.2582726.
  26. Lee, S. and Park, M. (2017), "Performance prediction of automotive wheel bearing seals", SAE Int. J. Passenger Cars-Mech. Syst., 10(2017-01-2525), 805-810. https://doi.org/10.4271/2017-01-2525.
  27. Lin, H.T., Leisk, G.G. and Trimmer, B. (2011), "GoQBot: a caterpillar-inspired soft-bodied rolling robot", Bioinspir. Biomimet., 6(2), 026007. https://doi.org/10.1088/1748-3182/6/2/026007.
  28. Liu, Z., Wang, F., Liu, S., Tian, Y. and Zhang, D. (2020), "Modeling and analysis of soft pneumatic network bending actuators", IEEE/ASME Trans. Mechatron., 26(4), 2195-2203. https://doi.org/10.1109/TMECH.2020.3034640.
  29. Ma, H. and Zhou, J. (2023), "Modeling, characterization, and application of soft bellows-type pneumatic actuators for bionic locomotion", Acta Mechanica Solida Sinica, 36(1), 1-12. https://doi.org/10.1007/s10338-022-00346-z.
  30. Mahiuddin, M., Khan, M.I.H., Kumar, C., Rahman, M.M. and Karim, M. (2018), "Shrinkage of food materials during drying: Current status and challenges", Comprehens. Rev. Food Sci. Food Saf., 17(5), 1113-1126. https://doi.org/10.1111/1541-4337.12375.
  31. Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C. and Bello, F. (2021), "Toward a common framework and database of materials for soft robotics", Soft Robot., 8(3), 284-297. https://doi.org/10.1089/soro.2019.0115.
  32. Meng, N., Kun, W., Mingxin, L., Ke, Y. and Zhi, W. (2020), "Design, analysis and experiment of finger soft actuator with nested structure for rehabilitation training", Adv. Mech. Eng., 12(11), 1687814020971538. https://doi.org/10.1177/1687814020971538.
  33. Mooney, M. (1940), "A theory of large elastic deformation", J. Appl. Phys., 11(9), 582-592. https://doi.org/10.1063/1.1712836.
  34. Ogden, R.W. (1972), "Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids", Proc. Roy. Soc. London. A. Math. Phys. Sci., 326(1567), 565-584. https://doi.org/10.1098/rspa.1972.0026.
  35. Polygerinos, P., Correll, N., Morin, S.A., Mosadegh, B., Onal, C.D., Petersen, K., ... & Shepherd, R.F. (2017), "Soft robotics: Review of fluid-driven intrinsically soft devices, manufacturing, sensing, control, and applications in human-robot interaction", Adv. Eng. Mater., 19(12), 1700016. https://doi.org/10.1002/adem.201700016.
  36. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M. and Walsh, C.J. (2013), "Towards a soft pneumatic glove for hand rehabilitation", 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1512-1517.
  37. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J. and Walsh, C.J. (2015), "Soft robotic glove for combined assistance and at-home rehabilitation", Robot. Autonom. Syst., 73, 135-143. https://doi.org/10.1016/j.robot.2014.08.014.
  38. Polygerinos, P., Wang, Z., Overvelde, J.T., Galloway, K.C., Wood, R.J., Bertoldi, K. and Walsh, C.J. (2015), "Modeling of soft fiber-reinforced bending actuators", IEEE Trans. Robot., 31(3), 778-789. https://doi.org/10.1109/TRO.2015.2428504.
  39. Rose, C.G. and O'Malley, M.K. (2018), "Hybrid rigid-soft hand exoskeleton to assist functional dexterity", IEEE Robot. Auto. Lett., 4(1), 73-80. https://doi.org/10.1109/LRA.2018.2878931.
  40. Sandesh, B., Sriharsha, H., Sathish, U.R. and Nikhil, G. (2018), "Investigation of tensile properties of RTV silicone based isotropic magnetorheological elastomers", MATEC Web Confer., 144, 02015. https://doi.org/10.1051/matecconf/201814402015.
  41. Sedal, A., Bruder, D., Bishop-Moser, J., Vasudevan, R. and Kota, S. (2018), "A continuum model for fiber-reinforced soft robot actuators", J. Mech. Robot., 10(2), 024501. https://doi.org/10.1115/1.4039101.
  42. Shahzad, M., Kamran, A., Siddiqui, M.Z. and Farhan, M. (2015), "Mechanical characterization and FE modelling of a hyperelastic material", Mater. Res., 18, 918-924. https://doi.org/10.1590/1516-1439.320414.
  43. Sholl, N. and Mohseni, K. (2024), "High-stretch, tendon-driven, fiber-reinforced membrane soft actuators with multiple active degrees of freedom", Commun. Eng., 3(1), 25. https://doi.org/10.1038/s44172-023-00139-3.
  44. Singh, G. and Krishnan, G. (2020), "Designing fiber-reinforced soft actuators for planar curvilinear shape matching", Soft Robot., 7(1), 109-121. https://doi.org/10.1089/soro.2018.0169.
  45. Singh, K., Gupta, S., Khosla, A. and Furukawa, H. (2023), "Transforming soft robotics: Laminar jammers unlocking adaptive stiffness potential in pneunet actuators", ECS J. Solid State Sci. Technol., 12(4), 047007. https://doi.org/10.1149/2162-8777/acce6b.
  46. Singh, K., Khosla, A., Gupta, S. and Furukawa, H. (2024), "Stiffness control of laminar jammers with fused layers: A discrete approach", IEEE Robotics and Automation Letters., 9(4), 3680-3687. https://doi.org/10.1109/LRA.2024.3368299.
  47. Sun, W., Schaffer, S., Dai, K., Yao, L., Feinberg, A. and Webster-Wood, V. (2021), "3D printing hydrogel-based soft and biohybrid actuators: A mini-review on fabrication techniques, applications, and challenges", Front. Robot. AI, 8, 673533. https://doi.org/10.3389/frobt.2021.673533.
  48. Sun, Z.S., Guo, Z.H. and Tang, W. (2019), "Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator", J. Central South Univ., 26(1), 106-119. https://doi.org/10.1007/s11771-019-3986-x.
  49. Tawk, C. and Alici, G. (2021), "A review of 3D-printable soft pneumatic actuators and sensors: Research challenges and opportunities", Adv. Intel. Syst., 3(6), 2000223. https://doi.org/10.1002/aisy.202000223.
  50. Treloar, L. (1973), "The elasticity and related properties of rubbers", Report. Progr. Phys., 36(7), 755. https://doi.org/10.1088/0034-4885/36/7/001.
  51. Vikas, V., Cohen, E., Grassi, R., Sozer, C. and Trimmer, B. (2016), "Design and locomotion control of a soft robot using friction manipulation and motor-tendon actuation", IEEE Trans. Robot., 32(4), 949-959. https://doi.org/10.1109/TRO.2016.2588888.
  52. Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F.S., Kumar, S. and Shin, M. (2020), "Soft robotics: A review of recent developments of pneumatic soft actuators", Actuat., 9(1), 3. https://doi.org/10.3390/act9010003.
  53. Wang, B., Aw, K.C., Biglari-Abhari, M. and McDaid, A. (2016), "Design and fabrication of a fiber-reinforced pneumatic bending actuator", 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 83-88.
  54. Wang, J., Fei, Y. and Pang, W. (2019), "Design, modeling, and testing of a soft pneumatic glove with segmented pneunets bending actuators", IEEE/ASME Trans. Mechatr., 24(3), 990-1001. https://doi.org/10.1109/TMECH.2019.2911992.
  55. Wang, L., Nurzaman, S.G. and Iida, F. (2017), "Soft-material robotics", Found. Trend. Robot., 5(3), 191-259. http://doi.org/10.1561/2300000055.
  56. Wang, Y., Kokubu, S., Zhou, Z., Guo, X., Hsueh, Y.H. and Yu, W. (2021), "Designing soft pneumatic actuators for thumb movements", IEEE Robot. Auto. Lett., 6(4), 8450-8457. https://doi.org/10.1109/LRA.2021.3105799.
  57. Wang, Z., Polygerinos, P., Overvelde, J.T., Galloway, K.C., Bertoldi, K. and Walsh, C.J. (2016), "Interaction forces of soft fiber reinforced bending actuators", IEEE/ASME Trans. Mechatron., 22(2), 717-727. https://doi.org/10.1109/TMECH.2016.2638468.
  58. Xavier, M.S., Fleming, A.J. and Yong, Y.K. (2021), "Finite element modeling of soft fluidic actuators: Overview and recent developments", Adv. Intel. Syst., 3(2), 2000187. https://doi.org/10.1002/aisy.202000187.
  59. Yang, C., Kang, R., Branson, D.T., Chen, L. and Dai, J.S. (2019), "Kinematics and statics of eccentric soft bending actuators with external payloads", Mech. Mach. Theory, 139, 526-541. https://doi.org/10.1016/j.mechmachtheory.2019.05.015.
  60. Yap, H.K., Goh, J.C.H. and Yeow, R.C.H. (2015), "Design and characterization of soft actuator for hand rehabilitation application", 6th European Conference of the International Federation for Medical and Biological Engineering: MBEC 2014, Dubrovnik, September.
  61. Yap, H.K., Lim, J.H., Nasrallah, F., Goh, J.C. and Yeow, R.C. (2015), "A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness", 2015 IEEE International Conference on Robotics and Automation (ICRA), 4967-4972.
  62. Yap, H.K., Ng, H.Y. and Yeow, C.H. (2016), "High-force soft printable pneumatics for soft robotic applications", Soft Robot., 3(3), 144-158. https://doi.org/10.1089/soro.2016.0030.
  63. Yeoh, O.H. (1993), "Some forms of the strain energy function for rubber", Rub. Chem. Technol., 66(5), 754-771. https://doi.org/10.5254/1.3538343
  64. Zhang, Y., Wang, D., Wang, Z., Wang, Y., Wen, L. and Zhang, Y. (2018), "A two-fingered force feedback glove using soft actuators", 2018 IEEE Haptics Symposium (HAPTICS), 186-191.
  65. Zhao, S., Wang, Z., Lei, Y., Huang, S., Zhang, J., Liu, J. and Gong, Z. (2021), "A bionic soft robotic glove mimicking finger actions based on sEMG recognition", https://doi.org/10.21203/rs.3.rs-418019/v1.
  66. Zhong, G., Dou, W., Zhang, X. and Yi, H. (2021), "Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures", Int. J. Mech. Sci., 193, 106150. https://doi.org/10.1016/j.ijmecsci.2020.106150.
  67. Zhou, J., Chen, X., Chang, U., Lu, J.T., Leung, C.C.Y., Chen, Y., Hu, Y. and Wang, Z. (2019), "A soft-robotic approach to anthropomorphic robotic hand dexterity", IEEE Access, 7, 101483-101495. https://doi.org/10.1109/ACCESS.2019.2929690.
  68. Zolfagharian, A., Kouzani, A.Z., Khoo, S.Y., Moghadam, A.A.A., Gibson, I. and Kaynak, A. (2016), "Evolution of 3D printed soft actuators", Sensor. Actuat. A: Phys., 250, 258-272. https://doi.org/10.1016/j.sna.2016.09.028.
  69. Zou, S., Picella, S., de Vries, J., Kortman, V.G., Sakes, A. and Overvelde, J.T. (2024), "A retrofit sensing strategy for soft fluidic robots", Nat. Commun., 15(1), 539. https://doi.org/10.1038/s41467-023-44517-z.