• Title/Summary/Keyword: cast-in-concrete

Search Result 499, Processing Time 0.024 seconds

An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall (블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구)

  • Choi, Chang-Sik;Lee, Hye-Yeon;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.199-206
    • /
    • 2005
  • In many other countries framed structures with inadequate lateral strength and stiffness have been strengthened by providing reinforced concrete infilled wall. There is a general agreement among researchers those infilled walls have 3-5times greater lateral strength compared with bare frame. The main objective of this research is to investigate the behavior and strength of reinforced concrete frames infilled with concrete block and cast-in-place reinforced concrete panels used for strengthening the structure against seismic action. For this purpose three 1/3 scale, one-bay, one-story reinforced concrete infilled frames were tested under reversed cyclic loading simulating the seismic effect. The results indicate that infilled walls increase both strength and stiffness significantly under lateral loads. Especially Strength capacity and initial stiffness of CIP infilled wall increased 3.8 times and 6.6 times higher than lightly reinforced concrete frame.

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

Shear strength of Cast-In Place R/C Infill Shear Wall (현장타설 철근콘크리트 끼움벽의 전단강도)

  • Choi Chang Sik;Lee Hye Yeon;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.247-250
    • /
    • 2005
  • The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.

  • PDF

Effect of waste aluminium shavings on the bond characteristics of laterized concrete

  • Ofuyatan, Olatokunbo M.;Ivoke, Anthony A.;Olowofoyeku, Adeoye M.;Adesina, Adeyemi;Oluwafemi, John
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • The utilization of fibre in concrete production not only solves the problem of disposing this solid waste but helps conserve natural resources. This study investigated the effect of waste aluminum shavings on bond strength of laterized concrete. Laterized concrete spliced beams of $150{\times}250{\times}2150mm$ and $175{\times}275{\times}2300mm$ were prepared. Fifteen specimens with 16 mm and 20 mm were cast with the addition of aluminium shavings at varying percentages of 1vol%, 1.5vol% and 2vol%; another ten specimens with 16 mm and 20 mm diameter bars at 0% of aluminium shavings were cast as control. Concrete cubes of number were prepared, three taken for each set of various percentages of aluminium shavings were used to determine the concrete strength. It was observed from the analysis that the compressive strength decreased as the percentage of aluminium shavings increased, while the aluminium shavings increased the bond between concrete and steel. However, for normal concrete there was an increase in bond resistance with increase in aluminium shavings. The bond resistance of 16 mm was found to be higher than that of 20 mm in all the specimens tested.

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

Study on prestressed concrete beams and poles with cement replaced by steel dust

  • Sujitha Magdalene, P;Harishankar, S
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.391-405
    • /
    • 2017
  • Cement acts as the most important component of concrete as it binds and holds the concrete together. But it is one of the major $CO_2$ emitters all over the world, during manufacturing (900 kg of $CO_2$ per 1000 kg). Some of the modern construction methods aim at reducing the amount of usage of cement and came out with numerous solutions for replacement of the same. One such supplement in current trend is the Steel dust or the Electric Arc Furnace Dust (EAFD), which is a waste product from the electric arc furnace when the scrap metal is melted. When the concrete containing steel dust is exposed to atmosphere, the environmental oxygen and moisture play role to form rust and ultimately the member becomes harder. As Cement is the binder of conventional concrete, only certain percentage of the same could be replaced by the new material, steel dust. Tests were conducted for the 28 days cube strength of M45 grade (suitable for prestressing) concrete which has 0%, 10%, 20%, 30%, 40% and 50% steel dust instead cement. From the test, the optimum percentage replacement of steel dust was obtained, for which the beams and overhead poles were cast, prestressed and tested for the failure load and deflections. A conventional concrete beam and overhead pole were also cast, prestressed and tested to compare the results with those of the beam and pole that contained steel dust. The load vs. deflection plot and other results from the test is also discussed.

The Design of long cantilever beam using post-tensioned tendons in Kumjung Stadium (포스트텐션을 이용한 장스팬 켄틸레버보의 설계)

  • 최동섭;김동환;김종수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.619-624
    • /
    • 2002
  • A prestressed/precast concrete system was used to build the new Asian Olympic Stadium Project in Pusan, Korea. The stadium(mainly intended for cycle racing) is designed for the 2002 Asian Olympic Games and has a seating capacity of 20,000 spectators plus a few private suites. More than 1300 prestressed/precast components were used and they include single columns, primary beams, cantilever beams, double riser stands, and double tees. Especially, a total of 24 cantilever beams is used on the fourth story for the stands and double tees. These 8m long beams are post-tensioned to prevent cracking, to increase their durability and to serve serviceability by vibration. A cantilever section with cast-in-place topping is 800mm wide and 1500mm deep. Cantilever beams are connected to the column with the corbel by cast-in place concrete. Bonded post-tensioning tendons were assembled at the job site. Dead-end anchorages were installed in the end of cantilever beams and live-end anchorage is the opposite of them. This article presents the geometric layouts, design features and so on.

  • PDF

Cast in Place of the Low Heat.Self Consolidation Concrete on Underground RC Box Structure using Low Heat Portland Cement (저열 포틀랜드 시멘트를 활용한 일반강도 저발열.자기충전 콘크리트의 지하박스 구조물 현장적용에 관한 연구)

  • Ha, Jae-Dam;Kwon, Tae-Hoon;Yoo, Sung-Young;Kim, Young-Woo;Kwon, Tae-Moon;Ahn, Byung-Rak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.215-216
    • /
    • 2009
  • Recently, the application of SCC (Self Consolidation Concrete) gets more necessity, in order to solve the problem of quality control, noise, etc. In this study describe the optimum mix proportion and the experience of cast in place of the SCC in main structure of underground RC box.

  • PDF

Physical Properties and Quality Control of Foamed Concrete with Fly Ash for Cast-in-Site (플라이애쉬를 혼입한 현장타설 경량기포콘크리트의 물리적 특성 및 품질관리)

  • 이도헌;전명훈;고진수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • Foamed concrete for cast-in-site, which shows excellent lightweight, thermal insulation, noise insulation, constructability and cost efficiency, has been applied as thermal insulation or filling material for On-dol. However, the technology is too insufficient to obtain the high level of quality, and serious problems often occur in quality control at sites. It, thus, is necessary to establish the proper and reasonable quality control method for ensuring the required quality, based on the investigation on the physical properties and their reciprocal relation. This study aims to settle the quality control method in case of applying FA foamed concrete replacing 40% by weight with fly-ash as the filling material for On-dol. The results of the study include the correlation among flow, as-placed density and foam ratio of fresh foamed concrete, the correlation between physical properties before hardening and after 28-day, provision of an equation to estimate 28-day compressive strength early with 7-day compressive strength, and suggestion of quality criteria for the revision of KS on foamed concrete for cast-in-site.