• 제목/요약/키워드: caspases-3

검색결과 172건 처리시간 0.032초

TRAIL in Combination with Subtoxic 5-FU Effectively Inhibit Cell Proliferation and Induce Apoptosis in Cholangiocarcinoma Cells

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6991-6996
    • /
    • 2015
  • In the past decade, the incidence and mortality rates of cholangiocarcinoma (CCA) have been increasing worldwide. The relatively low responsiveness of CCA to conventional chemotherapy leads to poor overall survival. Recently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has emerged as the most promising anti-cancer therapeutic agent since it is able to selectively induce apoptosis of tumor cells but not normal cells. In this study, we aimed to investigate the therapeutic effect of TRAIL in CCA cell lines (M213, M214 and KKU100) compared with the immortal biliary cell line, MMNK1, either alone or in combination with a subtoxic dose of 5-fluorouracil (5-FU). We found that recombinant human TRAIL (rhTRAIL) was a potential agent which significantly inhibited cell proliferation and mediated caspase activities (caspases 8, 9 and 3/7) and apoptosis of CCA cells. The combined treatment of rhTRAIL and 5-FU effectively enhanced inhibition of CCA cell growth with a smaller effect on MMNK1. Our finding suggests TRAIL to be a novel anti-cancer therapeutic agent and advantage of its combination with a conventional chemotherapeutic drug for effective treatment of CCA.

와송(瓦松)이 만성 골수성 백혈병 세포주(K562)에서 세포사멸에 미치는 영향 (Effect of Orostschys japonicus A. Berger on Apoptosis in K562 Cell Lines)

  • 윤경수;김영철;이장훈;우홍정
    • 대한한방내과학회지
    • /
    • 제27권1호
    • /
    • pp.166-177
    • /
    • 2006
  • Objectives : This study was performed to determine if Orostschys japonicus A. Berger has protective effects against CML in K562 cell lines. Materials and Methods : MTT assay, cell proliferation assay, Reverse transcription-polymerase reaction chain, RT-PCR, DNA fragmentation assay, Quantitative PCR were studied. Results : Orostschys japonicus A. Berger had no effects on Bax gene in K562 cell lines, but decreased Bcl-2 gene, and increased the Caspases-3 gene. This is indicate of induced apoptosis in K562 cell lines by Orostschys japonicus A. Berger. Conclusion : These results suggest that Orostschys japonicus A. Berger has effects on apatosis in K562 cell lines.

  • PDF

연근(Nelumbo nucifera Root) 추출물의 HT-29 인체 대장암세포 증식 억제 및 사멸 효과 (Effects of Nelumbo nucifera Root Extract on Proliferation and Apoptosis in HT-29 Human Colon Cancer Cells)

  • 권태은;정하숙
    • 동아시아식생활학회지
    • /
    • 제24권1호
    • /
    • pp.20-27
    • /
    • 2014
  • Our study is investigated the effects of Nelumbo nucifera root extract on HT-29 colon cancer cells. The anti-proliferative effect of 70% ethanol extract from Nelumbo nucifera root on HT-29 colon cancer cells was identified based on cell viability, Hoechst 33342 nuclear staining, apoptosis analysis, Western blotting and RT-PCR analyses. In our study, Nelumbo nucifera root extract inhibited the growth of HT-29 colon cancer cells in a dose-dependent manner. Concomitant activation of the mitochondria-dependent apoptotic pathway of HT-29 colon cancer cells by Nelumbo nucifera root extract occurred via modulation of Bax and Bcl-2 expressions, which activated cleavage of caspases-3 and -9. The findings of this study indicate that Nelumbo nucifera root extract induces apoptosis in HT-29 colon cancer cells, and this phenomenon is occurs via the death receptor-mediated and mitochondria-mediated apoptotic pathways.

In vitro Cytotoxicity and Apoptotic Effect of Chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4- tetrahydroisoquinoline on HL-60 Cells

  • Kim, Kun-Jung;Ju, Sung-Min;Kim, Myung-Wan;Lee, Chai-Ho;Kim, Won-Sin;Yun, Young-Gab;Yun, Yoo-Sik;Jeon, Byung-Hun
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.772-778
    • /
    • 2005
  • The chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4-tetrahydro- isoquinoline (CDDT) is a newly synthesized derivative from 1,2,3,4-Tetra- hydroisoquinoline (THIQ). The THIQs include potent cytotoxic agents that display a range of antitumor activities, antimicrobial activity, and other biological properties. In this study, we investigated the effect of CDDT on the cytotoxicity, induction of apoptosis in human promyelocytic leukemia cells (HL-60 cells). CDDT showed a significant cytotoxic activity in HL-60 cells ($IC_{50}$ = approximately $37\;{\mu}g/ml$) at a 24 hr incubation. Treatment of HL-60 cells with CDDT displayed several features of apoptosis, including formation of DNA ladders in agarose gel electrophoresis, morphological changes of HL-60 cells with DAPI stain. Here we observed that CDDT caused activation of caspase-3, caspase-8, and caspase-9. The most efficacious time on the activation of caspases-3 was achieved at 12 hr. Further molecular analysis demonstrated that CDDT led to cleavage of poly(ADP-ribose) polymerase (PARP), increase of hypodiploid (Sub-G1) population in the flow cytometric analysis. In conclusion, these above results indicate that CDDT dramatically suppresses HL-60 cell growth by activation of caspase-3 with caspase-8, -9 activity. These data may support a pivotal mechanism for the use of CDDT in the prevention and treatment of leukemia.

Ginsenoside Rg3의 항암효능 연구의 진보 (Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3)

  • 남기열;최재을;홍세철;표미경;박종대
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도 (Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells)

  • 신동역;김기영;최병태;강호성;정지형;최영현
    • 생명과학회지
    • /
    • 제17권10호
    • /
    • pp.1447-1451
    • /
    • 2007
  • 해양생물 유래 항암활성을 가지는 천연물의 탐색과정에서 해면동물에서 유래된 PTX-2는 p53 결손 암세포에서 세포독성 효과가 높은 것으로 보고된 바 있다. 본 연구에서는 인체 간암세포 모델을 이용하여 PTX-2의 효능을 조사한 결과는 p53 결손 Hep3B 세포에서 p53 정상 HepG2에 비하여 항암활성이 매우 높았으며, 이는 apoptosis 유발과 연관성이 있음을 확인하였다. PTX-2에 의한 Hep3B 세포의 apoptosis 유발은 DFF family의 발현 변화, pro-apoptotic Bax 및 Bcl-xS 단백질의 발현 증가, caspases (-3, -8 및 -9)의 활성화 등이 관여함을 알 수 있었다. PTX-2는 또한 Hep3B 세포에서 AKT 및 ERK1/2의 활성화를 유도하였으며, caspase-3, AKT 및 ERK1/2의 특이적 저해제에 의하여 PTX-2에 의한 세포증식 억제 효능이 유의적으로 감소되었다. 본 연구는 PTX-2에 의한 Hep3B 세포에서의 apoptosis 유도에 AKT 및 ERK1/2 신호 전달 경로가 중요한 역할을 하고 있음을 보여주는 결과이다.

Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe

  • Lee, Yongkyu
    • Toxicological Research
    • /
    • 제32권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, ${\alpha}$-zingiberene, was extracted from Zingiber officinale Roscoe, and ${\alpha}$-zingiberene makes up $35.02{\pm}0.30%$ of its total essential oil. ${\alpha}$-Zingiberene showed low $IC_{50}$ values, $60.6{\pm}3.6$, $46.2{\pm}0.6$, $172.0{\pm}6.6$, $80.3{\pm}6.6$ (${\mu}g/mL$) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than $IC_{50}$ values of general essential oil in those cells. The treatment of ${\alpha}$-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of ${\alpha}$-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of ${\alpha}$-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of ${\alpha}$-zingiberene is a result of apoptotic effects, and ${\alpha}$-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.

Protein Disulfide Isomerase Is Cleaved by Caspase-3 and -7 during Apoptosis

  • Na, Kyung Sook;Park, Byoung Chul;Jang, Mi;Cho, Sayeon;Lee, Do Hee;Kang, Sunghyun;Lee, Chong-Kil;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.261-267
    • /
    • 2007
  • Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.

Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation

  • Kim, Young-Mi;Kim, Jung Hwan;Kwon, Hyuk Min;Lee, Dong Heon;Won, Moo-Ho;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.413-424
    • /
    • 2013
  • Korean Red Ginseng extract (KRGE) is a traditional herbal medicine utilized to prevent endothelium dysfunction in the cardiovascular system; however, its underlying mechanism has not been clearly elucidated. We here examined the pharmacological effect and molecular mechanism of KRGE on apoptosis of human umbilical vein endothelial cells (HUVECs) in a serum-deprived apoptosis model. KRGE protected HUVECs from serum-deprived apoptosis by inhibiting mitochondrial cytochrome c release and caspase-9/-3 activation. This protective effect was significantly higher than that of American ginseng extract. KRGE treatment increased antiapoptotic Bcl-2 and Bcl-$X_L$ protein expression and Akt-dependent Bad phosphorylation. Moreover, KRGE prevented serum deprivation-induced subcellular redistribution of these proteins between the mitochondrion and the cytosol, resulting in suppression of mitochondrial cytochrome c release. In addition, KRGE increased nitric oxide (NO) production via Akt-dependent activation of endothelial NO synthase (eNOS), as well as inhibited caspase-9/-3 activities. These increases were reversed by co-treatment of cells with inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) and pre-incubation of cell lysates in dithiothreitol, indicating KRGE induces NO-mediated caspase modification. Indeed, KRGE inhibited caspase-3 activity via S-nitrosylation. These findings suggest that KRGE prevents serum deprivation-induced HUVEC apoptosis via increased Bcl-2 and Bcl-$X_L$ protein expression, PI3K/Akt-dependent Bad phosphorylation, and eNOS/NO-mediated S-nitrosylation of caspases. The cytoprotective property of KRGE may be valuable for developing new pharmaceutical means that limit endothelial cell death induced during the pathogenesis of vascular diseases.

Hep88 mAb-Mediated Paraptosis-Like Apoptosis in HepG2 Cells via Downstream Upregulation and Activation of Caspase-3, Caspase-8 and Caspase-9

  • Mitupatum, Thantip;Aree, Kalaya;Kittisenachai, Suthathip;Roytrakul, Sittiruk;Puthong, Songchan;Kangsadalampai, Sasichai;Rojpibulstit, Panadda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1771-1779
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Presently, targeted therapy via monoclonal antibodies to specific tumor-associated antigens is being continuously developed. Hep88 mAb has proven to exert tumoricidal effects on the HepG2 cell via a paraptosis-like morphology. To verify the pathway, we then demonstrated downstream up-regulation of caspase-3, caspase-8 and caspase-9, assessingmRNA expression by real-time PCR and associated enzyme activity by colorimetric assay. Active caspase-3 determination was also accomplished by flow cytometry. Active caspase-3 expression was increased by Hep88 mAb treatment in a dose-and time-dependent manner. All of the results indicated that Hep88 mAb induced programmed cell death in the HepG2 cell line from paraptosis-like to apoptosis by downstream induction of caspases. These conclusions imply that Hep88mAb might be a promising tool for the effective treatment of HCC in the future.