• 제목/요약/키워드: caspase-8

검색결과 563건 처리시간 0.025초

구강편평세포암종 세포주 SCC15에서 Mycolactone에 의한 apoptosis 효과 (RUNNING TITLE: APOPTOTIC EFFECT OF MYCOLACTONE IN SCC15 CELLS)

  • 김재우;송재철;이희경;이태윤
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권6호
    • /
    • pp.511-518
    • /
    • 2001
  • The effect of mycolactone, a recently reported apoptosis-inducing factor, was investigated in SCC15 oral squamous cell carcinoma(OSCC) cell line. Mycolactone rapidly induced cell death in OSCC cells in 2days, which was similar to that found in apoptotic cell such as detaching from culture plate and rounding-up of cells. Apoptotic cells were increased 4hrs after mycolactone treatment and more than half of cells showed apoptosis after 72hrs. Caspase 3 activation a biochemical evidence of apoptosis, was determined by Western blotting. Caspase 3 activation was started at 2hrs that lasted until 8hrs after mycolactone treatment. The expression of bcl-2 family genes was determined to explain the mechanism of apoptosis found in OSCC cells. The expressions of bad, bak, and bax (pro-apoptotic genes) and bcl-w and bcl-2 genes (anti-apoptotic genes) were not changed by mycolactone treatment. The expression of bcl-xi was decreased 8 hrs after mycolactone treatment. Mcl-1 expression was initially increased at 2 hrs which was decreased 8 hrs after mycolactone treatment. The down-regulation of these two anti-apoptotic genes might explain the mycolactone-induced apoptosis in OSCC cells. In this study, mycholactone was revealed to induce cell death in OSCC cells apoptosis and the apoptosis mechanism of OSCC cells was shown to be down-regulation of anti-apoptotic genes, bcl-xi and mcl-1. These results suggested the applicability of mycolactone for the development of an anti-cancer drug candidate by inducing apoptosis of OSCC cancer cell.

  • PDF

Steroids from the Cold Water Starfish Ctenodiscus crispatus with Cytotoxic and Apoptotic Effects on Human Hepatocellular Carcinoma and Glioblastoma Cells

  • Quang, Tran Hong;Lee, Dong-Sung;Han, Se Jong;Kim, Il Chan;Yim, Joung Han;Kim, Youn-Chul;Oh, Hyuncheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2335-2341
    • /
    • 2014
  • Chemical investigation on the methanol extract of the starfish Ctenodiscus crispatus resulted in the isolation of five steroids, (22E,$24{\zeta}$)-26,27-bisnor-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25-pentol 25-O-sulfate (1), (22E,24R,25R)-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25,26-hexol 26-O-sulfate (2), (28R)-24-ethyl-$5{\alpha}$-cholesta-$3{\beta}$,5,$6{\beta}$,8,$15{\alpha}$,28,29-heptaol-24-sulfate (3), (25S)-$5{\alpha}$-cholestane-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,$16{\beta}$,26-hexaol (4), and ${\Delta}7$-sitosterol (5). Their structures were identified by extensive spectroscopic analyses, including 1D, 2D NMR and MS and chemical methods. Compound 4 showed cytotoxicity against human hepatoma HepG2 and glioblastoma U87MG cells via inhibition of cell growth and induction of apoptosis. Induction of apoptosis by 4 was demonstrated by cell death, DNA fragmentation, increased Bax/Bcl-2 protein ratio and the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP).

Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화 (The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells)

  • 설재원;박상열
    • 대한수의학회지
    • /
    • 제49권1호
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

사람 폐암 세포주에서 시스플라틴이나 독소루비신의 세포독성에 미치는 녹차 추출물의 영향 (Effect of Green Tea Extract on Cisplatin- or Doxorubicin-Induced Cytotoxicity in Human Lung Cancer Cell Lines)

  • 이병래;박재윤;박평심
    • 한국식품영양과학회지
    • /
    • 제40권5호
    • /
    • pp.619-624
    • /
    • 2011
  • 항암 화학요법제의 항암작용을 증가시키거나, 부작용을 감소시켜 항암 치료를 효과적으로 할 수 있는 항암치료 보조제(modulator)에 대한 개발의 일환으로 녹차 추출물의 이용가능성을 추정하기 위하여 사람 폐암 세포주인 A549 세포를 배양하여 시스플라틴과 독소루비신의 항암성에 미치는 녹차 추출물과 EGCG의 영향을 비교 관찰하였다. A549 세포에 독성을 나타나는 농도는 녹차 추출물 $400\;{\mu}g$/mL, EGCG $300\;{\mu}g$/mL, 시스플라틴 $10\;{\mu}g$/mL 및 독소루비신 $8\;{\mu}g$/mL로, 녹차 추출물이 세포독성을 나타내는 농도는 시스플라틴이나 독소루비신에 비하면 낮았다. A549 세포에서 시스플라틴 $10\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되었고, EGCG나 녹차 추출물 $100\;{\mu}g$/mL를 첨가하면 시스플라틴 $6\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되어 EGCG나 녹차 추출물 첨가로 시스플라틴의 세포독성이 증가되었다. A549 세포에서 독소루비신 $8\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되었고, EGCG나 녹차 추출물 $100\;{\mu}g$/mL를 첨가하면 독소루비신 $4\;{\mu}g$/mL 이상의 농도에서 세포활성이 감소되어 EGCG나 녹차 추출물 첨가로 독소루비신의 세포독성이 증가되었다. A549 세포에서 녹차추출물 투여 후 p53 및 caspase 3에 대한 Western blot을 시행한 결과 p53및 caspase-3의 유전자 발현이 증가되었다. 이상의 실험결과 녹차추출물은 광범위 항암제 시스플라틴이나 독소루비신의 세포독성을 증강시키는 효과가 있고, 녹차추출물에 의한 p53이나 caspase-3 등과 같은 세포자살유도 단백질의 발현 증가는 녹차추출물에 의한 세포독성 증강효과와 연관이 있을 것으로 추측된다. 녹차추출물의 시스플라틴이나 독소루비신 세포독성 증강효과는 항암화학요법제의 용량을 늘리지 않고 항암력을 증대시킬 수 있기 때문에 항암화학요법 보조제로서 이용될 수 있는 가능성이 높은 것으로 생각되며, 이러한 효과를 규명하기 위한 연구가 필요할 것으로 사료된다.

Effect of Carcinogenic Chromium(VI) on Cell Death and Cell Cycle in Chinese Hamster Ovary Cells

  • Lee, San-Han;Nam, Hae-Seon;Kim, Sung-Ho
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권3호
    • /
    • pp.113-120
    • /
    • 2004
  • Chromium compounds are known human and animal carcinogens. In this study, the effects of sodium chromate on apoptosis and cell cycle were investigated in order to unveil the elements of early cellular responses to the metal. Using Chinese hamster ovary cells(CHO-K1-BH4), we found taht chromium (VI) treatment induced apoptosis in these cells, as signified by nuclear fragmentation, DNA laddering on agarose gel electrophoresis, and an increased proportionof cells with hypodiploid DNA. Preceding these changes, chromium (VI) treatment increased caspase 3 pritease activity and also increased expression of p53 protein, while the level of bcl2 protein was not changed. Coincubation with caspase inhibitor, Z-DEVD-FMK, inhibited chromium-induced apoptosis. In the flow cytometric analysis using propidium iodide fluorescence, an increase of cell population in G2/M phase was shown in cells exposed to at least 160 $\mu\textrm{m}$ of sodium chromate for 72h, form 9.8% for 0$\mu\textrm{m}$ chromium (VI) to 26.4% for 320$\mu\textrm{m}$ chromium(VI). Taken together, these findings suggest that chromium(VI)-induced apoptosis is accompanied by G2/M cell cycle arrest, and that p53-mediated pathway may be involved in positive regulation of G2/M arrest and a concurred apoptosis in CHO cells.

  • PDF

The roles of FADD in extrinsic apoptosis and necroptosis

  • Lee, Eun-Woo;Seo, Jin-Ho;Jeong, Man-Hyung;Lee, Sang-Sik;Song, Jae-Whan
    • BMB Reports
    • /
    • 제45권9호
    • /
    • pp.496-508
    • /
    • 2012
  • Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast

  • Piao, Mei Jing;Kim, Ki Cheon;Cho, Suk Ju;Chae, Sungwook;Kang, Sam Sik;Hyun, Jin Won
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.127-136
    • /
    • 2013
  • Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.

Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

  • Park, Young-Hoon;Jeong, Mi Suk;Jang, Se Bok
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.159-166
    • /
    • 2016
  • Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer.

4-(Tert-butyl)-2,6-bis(1-phenylethyl)phenol induces pro-apoptotic activity

  • Kim, Jun Ho;Lee, Yunmi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.253-259
    • /
    • 2016
  • Previously, we found that KTH-13 isolated from the butanol fraction of Cordyceps bassiana (Cb-BF) displayed anti-cancer activity. To improve its antiproliferative activity and production yield, we employed a total synthetic approach and derivatized KTH-13 to obtain chemical analogs. In this study, one KTH-13 derivative, 4-(tert-butyl)-2,6-bis(1-phenylethyl)phenol (KTH-13-t-Bu), was selected to test its anti-cancer activity. KTH-13-t-Bu diminished the proliferation of C6 glioma, MDA-MB-231, LoVo, and HCT-15 cells. KTH-13-t-Bu induced morphological changes in C6 glioma cells in a dose-dependent manner. KTH-13-t-Bu also increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, KTH-13-t-Bu increased the levels of cleaved caspase-3 and -9. In contrast, KTH-13-t-Bu upregulated the levels of pro- and cleaved forms of caspase-3, -8, and -9 and Bcl- 2. Phospho-STAT3, phospho-Src, and phospho-AKT levels were also diminished by KTH13-t-Bu treatment. Therefore, these results strongly suggest that KTH-13-t-Bu can be considered a novel anti-cancer drug displaying pro-apoptotic activity.

Bufalin Induces Mitochondrial Pathway-Mediated Apoptosis in Lung Adenocarcinoma Cells

  • Ding, Da-Wei;Zhang, Yong-Hong;Huang, Xin-En;An, Qing;Zhang, Xun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10495-10500
    • /
    • 2015
  • Background: To evaluate the effects of bufalin in A549 human lung adenocarcinoma epithelial cells in vitro and assess the underlying mechanisms. Materials and Methods: Human A549 non-small cell lung cancer (NSCLC) cells were treated with various concentrations of bufalin. Cell proliferation was measured by CCK-8 assay, apoptotic cell percentage was calculated by flow cytometry and morphological change was observed by inverted phase contrast microscopy/transmission electron microscopy. In addition, the membrane potential of mitochondria was detected by JC-1 fluorescence microscopy assay, and the related protein expression of cytochrome C and caspase-3 was analyzed by Western blotting. Results: Bufalin could inhibit the proliferation of A549 cells via induction of apoptosis, with the evidence of characteristic morphological changes in the nucleus and mitochondria. Furthermore, bufalin decreased the mitochondrial membrane potential with up-regulation of cytochrome C in the cytosol, and activation of caspase-3. Conclusions: Bufalin inhibits the proliferation of A549 cells and triggers mitochondria-dependent apoptosis, pointing to therapeutic application for NSCLC.