• Title/Summary/Keyword: caspase-6

Search Result 538, Processing Time 0.037 seconds

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

Quinacrin Induces Cytochrome c-dependent Apoptotic Signaling in Human Cervical Carcinoma Cells

  • Fasanmade, Adedigbo A.;Owuor, Edward D.;Ee, Rachel P.L.;Qato, Dima;Heller, Mark;Kong, Ah Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.126-135
    • /
    • 2001
  • Quinacrine (QU), a phospholipase-A2 (PLA-2) inhibitor has been used clinically as a chemotherapeutic adjuvant. To understand the mechanisms leading to its chemotherapeutic effect, we have investigated QU-induced apoptotic signaling pathways in human cervical squamous carcinoma HeLa cells. In this study, we found that QU induced cytochrome c-dependent apoptotic signaling. The release of pro-apoptotic cytochrome c was QU concentration- and time-dependent, and preceded activation of caspase-9 and -3. Flow cytometric FACScan analysis using fluorescence intensities of $DiOC_6$/ demonstrated that QU-induced cytochrome c release was independent of mitochondrial permeability transition (MPT), since the concentrations of QU that induced cytochrome c release did not alter mitochondrial membrane potential (${\blacktriangle}{\Psi}_m$). Moreover, kinetic analysis of caspase activities showed that cytochrome c release led to the activation of caspase-9 and downstream death effector caspase-3, Caspase-3 inhibitor (Ac-DEVD-CHO) partially blocked QU-induced apoptosis, suggesting the importance of caspase-3 in this apoptotic signaling mechanism. Supplementation with arachidonic acid (AA) sustained caspase-3 activation induced by QU. Using inhibitors against cellular arachidonate metabolism of lipooxygenase (Nordihydroxyguaiaretic Acid, NDGA) and cyclooxygenase (5,8,11,14-Eicosatetraynoic Acid, ETYA) demonstrated that QU-induced apoptotic signaling may be dependent on its role as a PLA-2 inhibitor. Interestingly, NDCA attenuated QU-induced cytochrome c release, caspase activity as well as apoptotic cell death. The blockade of cytochrome c release by NDCA was much more effective than that attained with cyclosporin A (CsA), a MPT inhibitor. ETYA was not effective in blocking cytochrome c release, except under very high concentrations. Caspase inhibitor z-VAD blocked the release of cytochrome c suggesting that this signaling event is caspase dependent, and caspase-8 activation may be upstream of the mitochondrial events. In summary, we report that QU induced cytochrome c-dependent apoptotic signaling cascade, which may be dependent on its role as a PLA-2 inhibitor. This apoptotic mechanism induced by QU may contribute to its known chemotherapeutic effects.

  • PDF

Sulforaphane-Induced Apoptosis was Regulated by p53 and Caspase-3 Dependent Pathway in Human Chondrosarcoma, HTB-94 (Sulforaphane에 의한 p53 및 caspase-3 의존 신호전달계를 통한 인간 연골암 세포주 HTB-94에서의 세포사멸 기전 연구)

  • Lee, Won-Kil;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.851-857
    • /
    • 2011
  • Sulforaphane (SFN) is an isothiocyanate, isolated from glucoraphanin in broccoli and other cruciferaous vegetables. Recent studies have revealed that SFN induces anti-proliferation and apoptosis by cell cycle arrest in various cancer cells. In this study, we investigated the effect of SFN induced apoptosis in chondrosarcoma HTB-94 cells. SFN caused suppression of proliferation and apoptosis in a dose-dependent manner as determined by cell phenotype, MTT assay and FACS analysis in HTB-94 cells. Treatment of SFN led to caspase-3 activation and p53 accumulation as determined by Western blot analysis. Also, SFN significantly induced DNA fragmentation and nuclear degradation though activation of caspase-3, as detected by DNA electrophoresis and immunostaining, respectively. Our results indicate that SFN-induced apoptosis was regulated by p53 and caspase-3 dependent pathways. Furthermore, SFN may act as a potent anti-proliferation agent, and as a promising candidate for molecular-targeting chemotherapy against human chondrosarcoma cells.

Apoptotic Effects of 6-Gingerol in Human Breast Cancer Cells

  • Kim, Hyun-Woo;Oh, Deuk-Hee;Koh, Jeong-Tae;Lim, Young-Chai
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • 6-Gingerol exerts anti-tumor effects in various cancer cell models. We evaluated the effect of 6-gingerol on the growth of MCF-7 breast cancer cells and MCF-10A breast epithelial cells to determine whether any growth-inhibitory effects found were attributable to apoptosis, and to elucidate the underlying mechanism of action. 6-Gingerol inhibited the viability of both cell lines in a dose- and time-dependent manner; however, the degree of inhibition was greater in MCF-7 than MCF-10A cells. By flow cytometry, induction of dose- and time-dependent apoptosis was found, and the magnitude of apoptosis was also markedly greater in MCF-7 than MCF-10A cells. Expression of caspase-3 and poly (ADP-ribose) polymerase (PARP) was observed in MCF-7 cells treated with 6-gingerol, and further cleavage of PARP occurred in these cells. We suggest that 6-gingerol induces apoptosis in human breast cancer cells mainly by promoting caspase-3 expression and subsequent degradation of PARP.

6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone Induces Caspase-8- and -9-mediated Apoptosis in Human Cancer Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Ristee, Chantrarat;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2637-2641
    • /
    • 2013
  • 6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone (DMMA), a purified compound from Polyalthia cerasoides roots, is cytotoxic to various cancer cell lines. The aims of this study were to demonstrate the type of cancer cell death and the mechanism(s) involved. DMMA inhibited cell growth and induced apoptotic death in human leukemic cells (HL-60, U937, MOLT-4), human breast cancer MDA-MB231 cells and human hepatocellular carcinoma HepG2 cells in a dose dependent manner, with $IC_{50}$ values ranging between 20-55 ${\mu}M$. DMMA also decreased cell viability of human peripheral blood mononuclear cells. The morphology of cancer cells induced by the compound after staining with propidium iodide and examined under a fluorescence microscope was condensed nuclei and apoptotic bodies. Mitochondrial transmembrane potential (MTP) was decreased after 24h exposure in all five types of cancer cells. DMMA-induced caspase-3, -8, and -9 activity was strongly induced in human leukemic HL-60 and MOLT-4 cells, while in U937-, MDA-MB231- and HepG2-treated cells there was partial induction of caspase. In conclusion, DMMA-induced activation of caspase-8 and -9 resulted in execution of apoptotic cell death in human leukemic HL-60 and MOLT-4 cell lines via extrinsic and intrinsic pathways.

Research on the Anti-Breast Cancer and Anti-Inflammatory Effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum (청간해울탕(淸肝解鬱湯)과 십륙미유기음(十六味流氣飮)의 유방암에 대한 항암, 항염 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate anti-breast cancer and anti-inflammatory effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum. Methods: MDA-MB-231 cells were used to measure cytotoxicity, Reactive oxygen species (ROS) production, protein expression amounts of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), Cytochrome C Caspase-3, Caspase-7, Caspase-9, Poly ADP-ribose polymerase (PARP), Nuclear factor erythroid-2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD (P) H Quinone Oxidoreductase 1 (NQO1) to evaluate the anti-breast cancer effects of Chungganhaewool-tang (CHT) and Shipyeukmiyeugi-eum (SYE), and THP-1 cells, differentiated into macrophage and induced inflammation with Lipopolysaccharide (LPS), were used to measure production amounts of ROS, Nitric oxide (NO), and protein expression amounts of Inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX-2), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor-alpha (TNF-α) to evaluate the anti-inflammatory effects of CHT and SYE. Results: CHT and SYE reduced MDA-MB-231 cell counts, increased protein expression of Bax and Cytochrome C, and decreased protein expression of Bcl-2, Bcl-xl. The protein expression amounts of Caspase-3, 7, and 9 decreased, but amounts of the active form, cleaved Caspase-3, 7, and 9, increased. In addition, PARP protein expression decreased, the amount of PARP protein in the cleaved form increased, and the amount of protein expressions of Nrf2 and HO-1 decreased, but NQO1 showed no significant difference. In THP-1 cells CHT and SYE reduced ROS and NO, and reduced protein expressions of iNOS, COX-2, IL-1, and TNF-α, but only SYE groups reduced IL-6. Conclusions: This study suggests that CHT and SYE have potential to be used as treatments for breast cancer.

A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

  • Hee, Oh-Seon;Lee, Bang-Wool;Quan, Yin-Hu;Kim, Hyun-Mi;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.107.1-107.1
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (6 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. (omitted)

  • PDF

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

The Anti-inflammatory Mechanism of the Peel of Zanthoxylum piperitum D.C. is by Suppressing NF-κB/Caspase-1 Activation in LPS-Induced RAW264.7 Cells

  • Choi, Yun-Hee;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 2019
  • Zanthoxylum piperitum D.C. (ZP) peels has been used as a natural spice and herb medicine for hypertension reduction, for strokes, and for its anti-bacterial and anti-oxidant activity. However, the anti-inflammatory mechanisms employed by ZP have yet to be completely understood. In this study, we elucidate the anti-inflammatory mechanism of ZP in lipopolysaccharide (LPS)-induced RAW264.7 cells. We evaluated the effects of ZP in LPS-induced levels of inflammatory cytokines, prostaglandin E2 (PGE2), and caspase-1 using ELISA. The expression levels of inflammatory-related genes, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), were assayed by Western blot analysis. We elucidated the effect of ZP on nuclear factor (NF)-κB activation by means of a luciferase activity assay. The findings of this study demonstrated that ZP inhibited the production of inflammatory cytokine and PGE2 and inhibited the increased levels of COX-2 and iNOS caused by LPS. Additionally, we showed that the anti-inflammatory effect of ZP arises by suppressing the activation of NF-κB and caspase-1 in LPS- induced RAW264.7 cells. These results provide novel insights into the pharmacological actions of ZP as a potential candidate for development of new drugs to treat inflammatory diseases.

Effects of Isothiocyanates on Antioxidant Response Element-mediated Gene Expression and Apoptosis

  • Hong Sung-Jae;Kim Sung-Min;Kim Young-Sook;Hu Rong;Kong A.N. Tony;Kim Bok-Ryang
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.53-60
    • /
    • 2004
  • The pro-apoptotic effect of phenethyl isothiocyanate (PEITC) and the role of glutathione (GSH) in sulforaphane (SFN)-induced antioxidant response element-dependent gene expression were investigated. The caspase-3 and caspase-9 activities were stimulated by PEITC. The release of cytochrome c was time- and dose- dependent. SP600125 suppressed apoptosis induced by PEITC. Similarly, this JNK inhibitor attenuated both cytochrome c release and caspase-3 activation induced by PEITC. SFN is converted to the glutathione conjugate by glutathione S-transferases (GSTs). It was accumulated in mammalian cells by up to several hundred-fold over the extracellular concentration, by conjugation with intracellular GSH. The induction of ARE by SFN was 8.6-fold higher than by SFN-NAC. The decrease in ARE expression at higher concentrations of SFN and SFN-NAC was correlated with the accelerated apoptotic cell death, with a dose-dependent activation of caspase 3 activity by SFN. Upon addition of extracellular GSH within 6 hr of treatment with SFN, the effect on ARE expression was blocked almost completely.

  • PDF