• Title/Summary/Keyword: caspase activation

Search Result 883, Processing Time 0.032 seconds

In vitro Cytotoxicity and Apoptotic Effect of Chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4- tetrahydroisoquinoline on HL-60 Cells

  • Kim, Kun-Jung;Ju, Sung-Min;Kim, Myung-Wan;Lee, Chai-Ho;Kim, Won-Sin;Yun, Young-Gab;Yun, Yoo-Sik;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.772-778
    • /
    • 2005
  • The chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4-tetrahydro- isoquinoline (CDDT) is a newly synthesized derivative from 1,2,3,4-Tetra- hydroisoquinoline (THIQ). The THIQs include potent cytotoxic agents that display a range of antitumor activities, antimicrobial activity, and other biological properties. In this study, we investigated the effect of CDDT on the cytotoxicity, induction of apoptosis in human promyelocytic leukemia cells (HL-60 cells). CDDT showed a significant cytotoxic activity in HL-60 cells ($IC_{50}$ = approximately $37\;{\mu}g/ml$) at a 24 hr incubation. Treatment of HL-60 cells with CDDT displayed several features of apoptosis, including formation of DNA ladders in agarose gel electrophoresis, morphological changes of HL-60 cells with DAPI stain. Here we observed that CDDT caused activation of caspase-3, caspase-8, and caspase-9. The most efficacious time on the activation of caspases-3 was achieved at 12 hr. Further molecular analysis demonstrated that CDDT led to cleavage of poly(ADP-ribose) polymerase (PARP), increase of hypodiploid (Sub-G1) population in the flow cytometric analysis. In conclusion, these above results indicate that CDDT dramatically suppresses HL-60 cell growth by activation of caspase-3 with caspase-8, -9 activity. These data may support a pivotal mechanism for the use of CDDT in the prevention and treatment of leukemia.

Caspase-8 Potentiates Triglyceride (TG)-Induced Cell Death of THP-1 Macrophages via a Positive Feedback Loop (Caspase-8의 양성 피드백 방식을 통한 중성지방-유도 THP-1 대식세포 사멸 증가)

  • Jung, Byung Chul;Lim, Jaewon;Kim, Sung Hoon;Kim, Yoon Suk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.158-164
    • /
    • 2021
  • Hypertriglyceridemia is the main risk factor for atherosclerosis. It is reported that triglyceride (TG) induces macrophage cell death, and is involved in the formation of plaques and development of atherosclerosis. We previously reported that TG-induced cell death of macrophages is mediated via pannexin-1 activation, which increases the extracellular ATP and subsequent increase in potassium efflux, thereby activating the caspase-2/caspase-1/apoptotic caspases, including the caspase-8 pathway. Contrarily, some studies have reported that caspase-8 is an upstream molecule of caspase-1 and caspase-2 in several cellular processes. Therefore, this study was undertaken to investigate whether caspase-8 influences its upstream molecules in TG-stimulated macrophage cell death. We first confirmed that caspase-8 induces caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage in TG-treated macrophages. Next, we determined that the inhibition of caspase-8 results in reduced caspase-1 and -2 activity, which are upstream molecules of caspase-8 in TG-induced cell death of macrophages. We also found that ATP treatment restores the caspase-8 inhibitor-induced caspase-2 activity, thereby implying that caspase-8 affects the upstream molecules responsible for increasing the extracellular ATP levels in TG-induced macrophage cell death. Taken together, these findings indicate that caspase-8 potentiates the TG-induced macrophage cell death by activating its upstream molecules.

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells (p-Coumaric acid에 의해 유도되는 인체 Jurkat T 세포의 에폽토시스 기전)

  • Lee, Je-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1678-1688
    • /
    • 2011
  • The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.

Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young;Park, Jong-Hwa;Paik, Hyun-Dong;Nah, Seung-Yeol;Kim, Darrick S.H.L.;Han, Ye Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

Resveratrol Induces Cell Death through ROS-dependent MAPK Activation in A172 Human Glioma Cells (사람의 신경교모세포종 기원 세포에서 레스베라트롤에 의한 활성산소종 생성 증가와 MAPK 활성화를 통한 세포 사멸 효과)

  • Jung, Jung Suk;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • Glioblastoma multiforme is the most common and most aggressive type of primary brain tumor in humans. Despite intensive treatment, including surgery, radiation, and chemotherapy, most patients die of the disease. Although the anti-cancer activity of resveratrol has been demonstrated in various cancer cell types, its underlying mechanism in glioma cells is not fully elucidated. The present study was undertaken to investigate the effect of resveratrol on cell viability and to determine the molecular mechanism in A172 human glioma cells. Resveratrol caused the generation of reactive oxygen species (ROS), and resveratrol-induced cell death was prevented by antioxidants (N-acetylcysteine and catalase), suggesting that an oxidative mechanism is responsible for resveratrol-induced cell death. Resveratrol-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK), and resveratrol-induced cell death were prevented by inhibitors of these kinases. Resveratrol-induced activation of caspase-3 and cell death were prevented by the caspase inhibitors. ERK activation and caspase-3 activation induced by resveratrol was blocked by N-acetylcysteine. Taken together, these results suggest that resveratrol causes a caspase-dependent cell death via activation of ERK, p38, and JNK, mediated by ROS generation, in human glioma cells.

Study on the Antileukemic Effect of Galla Rhois

  • Kim, Myung-Wan;Ju, Sung-Min;Kim, Kun-Jung;Yun, Yong-Gab;Han, Dong-Min;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.234-241
    • /
    • 2005
  • Galla Rhois is a nest of parasitic bug, Mellaphis chinensis Bell, in Rhus chinensis Mill. Galla Rhois has been used for the therapy of diarrhea, peptic ulcer, hemauria, etc., that showed various antiinflammatory activity, and other biological properties. We studied the effect of Galla Rhois water extract(GRWE). The cytotoxic activity of GRWE in HL-60 cells was increased in a concentration-dependent manner. GRWE was cytotoxic to HL-60 cells, with $IC_50$ of $100{\mu}g/m{\ell}$. Treatment of GRWE to HL-60 cells showed the fragmentation of DNA in a concentration manner, suggesting that these cells underwent apoptosis. In addition, the flow cytometric analysis revealed GRWE concentration-dependently increased apoptotic cells with hypodiploid DNA content and arrested G1 phase of cell cycle. These results indicate that GRWE may have a possibility of potential anticancer activities. Treatment of HL-60 cells with GRWE was induced activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, caspase-3 was directly activated via caspase-8 activation. GRWE also caused the release of cytochrome c from mitochondria into the cytosol. GRWE-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during GRWE-induced apoptosis in HL-60 cells.

Curcumin-Induced Apoptosis of A-431 Cells Involves Caspase-3 Activation

  • Shim, Joong-Sup;Lee, Hyung-Joo;Park, Sang-shin;Cha, Bong-Gee;Chang, Hae-Ryong
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.189-193
    • /
    • 2001
  • Curcumin a yellow pigment from Curcuma Tonga, has been known to possess antioxidative and anticarcinogenic properties, as well as to induce apoptosis in some cancer cells. There have been, however, several contradictory reports that hypothesized curcumin (a hydrophobic molecule) can bind a membrane Gpid bilayer and induce nonspecific cytotoxicity in some cell lines. Why curcumin shows these contradictory effects is unknown. In A-431 cells, growth inhibition by curcumin is due mostly to the specific inhibition of the intrinsic tyrosine kinase activity of the epidermal growth factor receptor, as reported earlier by Korutla et al. Thus, we assumed that the cell death of A-431 by curcumin might be due to the specific induction of apoptosis. In this paper we clearly show that curcumin induces apoptosis in A-431 cells. The cureumin-induced cell death of A-431 exhibited various apoptotic features, including DNA fragmentation and nuclear condensation. Furthermore, the curcumin-induced apoptosis of A-431 cells involved activation of caspase-3-like cysteine protease. Involvement of caspase-3 was further confirmed by using a caspase-3 specific inhibitor, DEVD-CHO. In another study, decreased nitric oxide (NO) production was also shown in A-431 cells treated with curcumin, which seems to be the result of the inhibition of the iNOS expression by curcumin, as in other cell lines. However, 24 h after treatment of curcumin there was increased NO production in A-431 cells. This observation has not yet been clearly explained. We assumed that the increased NO production may be related to denitrosylation of the enzyme catalytic site in caspase-3 when activated. Taken together, this study shows that the cell death of A-431 by curcumin is due to the induction of apoptosis, which involves caspase-3 activation.

  • PDF

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.