• Title/Summary/Keyword: carthamus tinctorius

Search Result 169, Processing Time 0.024 seconds

Effects of Safflower (Carthamus tinctorius L.) Seed Powder on Fracture Healing in Rats (홍화(Carthamus tinctorius L.)씨 분말의 랫드 골절에 대한 치유 효과)

  • Park, Chang-Hyun;Uhm, Chang-Sub;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2001
  • Safflower (Carthamus tinctorius L.) is a thistle-like annual plant mainly grown in dry hot climates as an oilseed or birdseed. Traditionally, the oil has mainly been sold in the health food market because it is unsaturated having high linoleic and oleic acid levels. With increased health consciousness in recent years, the oil quality has become a more general health issue. This study was designed to understand whether safflower seed powder has positive effects on the fracture healing in rats. Simple transverse fracture of rat fibula was made with a rotating diamond disc saw. The histologic changes of rats were observed with a scanning electron microscope. The fractured fibulae showed a complete fusion at the fracture site in the 4th to 5th week after a simple transverse fracture. Administration of safflower seed powder facilitated the speed of histologic changes without affecting qualitative changes. These results suggest that safflower seed powder nay have substances that help the fracture healing process.

  • PDF

Quantitative Changes in Phenolic Compounds of Safflower (Carthamus tinctorius L.) Seeds during Growth and Processing

  • Kim, Eun-Ok;Lee, Jun-Young;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Phenolic compounds in safflower seeds were recently found to stimulate bone formation and increase plasma HDL cholesterol levels in estrogen deficient rats, and to inhibit melanin synthesis. Nine phenolic compounds: $N-feruloylserotonin-5-O-{\beta}-D-glucoside,\;8'-hydroxyarctigenin-4'-O-{\beta}-D-glucoside,\;luteolin-7-O-{\beta}-D-glucoside$, N-(p-coumaroyl)serotonin, N-feruloylserotonin, 8'-hydroxy arctigenin (HAG), luteolin (LT), $acacetin-7-O-{\beta}-D-glucuronide$ (ATG) and acacetin (AT), were quantified by HPLC in safflower (Carthamus tinctorius L.) seeds during growth and processing. During growth, levels of the nine phenolic compounds in the seeds increased progressively with increasing growth stages, reached a maximum on July 30 (42nd day after flowering), and then remained relatively constant. During the roasting process, levels of phenolic compounds, except HAG, LT and AT, generally decreased with increased roasting temperature and time, whereas those of HAG, LT and AT increased progressively with increased roasting temperature and time. During the steaming process, levels of other phenolic compounds except HAG and AT generally tended to increase with increased steaming time, whereas those of HAG and AT were scarcely changed. During the microwave treatment, quantitative changes of phenolic compounds were similar to the roasting process, although there were some differences in levels of phenolic compounds between two heat treatments. These results suggest that the steamed safflower seeds after harvesting on late July may be useful as potential dietary supplement source of phenolic compounds for prevention of several pathological disorders, such as atherosclerosis and osteoporosis and aging.

Constituents of Flowers of Carthamus tinctorius L. and Their Antioxidant Activity (홍화의 성분 분리 및 항산화 활성)

  • Choi, Hyun-Gyu;Jiang, Yan-Fu;Park, Sung-Hee;Son, Ae-Ryang;Na, Min-Kyun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • As part of our ongoing study focused on the discovery of antioxidants from natural products by measuring the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, methanol extract of flowers of Carthamus tinctorius L. was found to show potent antioxidant activity. Activity-guided fractionation of the methanol extract lead to the isolation of twenty compounds including two flavonol glycosides, quercertin-3-O-${\beta}$-D-glucopyranoside (12) and kaempferol-3-O-${\alpha}$-L-rhamnopyranosyl-${\beta}$-D-glucopyranoside (18), two flavanone glycosides, (2S)-4',5,6,7-tetrahydroxyflavanone 6-O-${\beta}$-D-glucopyranoside (15) and (2R)-5,7,8',4-tetrahydroxyflavanone 8-O-${\beta}$-D-glucopyranoside (16), and two acetylenic glycosides, 8Z-decaene-4,6-diyne-1-O-${\beta}$-D-glucopyranoside (13) and 4,6-decadiyne-1-O-${\beta}$-D-glucopyranoside (14). Their chemical structures were identified by using spectroscopic analysis. Among them, compounds 12-18 were tested in DPPH assay. Compounds 13-16 were first reported to their antioxidant activity. Quercertin-3-O-${\beta}$-D-glucopyranoside (12) showed the most potent inhibitory effect on DPPH with $IC_{50}$ value of 56.7 ${\mu}M$.

Neuroprotective Effects of the Extracts from the Aerial Parts of Carthamus tinctorius L. on Transient Cerebral Global Ischemia in Rats (홍화 지상부 추출물의 전뇌허혈에 대한 신경보호 효과)

  • Kim, Young Ock;Lee, Sang Won;Yang, Seung Ok;Na, Sae Won;Kim, Su Kang;Chung, Joo Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • In traditional Korean and Chinese medicine, safflower (Carthamus tinctorius L.) for the treatment of central nervous system-related symptoms such as tremor, seizure, stroke and epilepsy. We investigated the effects of safflower could influence cerebral ischemia-induced neuronal and cognitive impairments. Administration of safflower for 1 day (200 mg/kg body weight, p.o.) increased the survival of hippocampal CA1 pyramidal neurons after transient global brain ischemia. And neurological functions measured as short term memory. Post-treatment with safflower for 2 times decreased the induction/reduction - induced production of neuronal cell loss from global cerebral ischemia. Safflower markedly decreased neuronal cell death and also caused a decrease in the content of thiobarbituric acid-reacting substances (TBARS) ($55.2{\pm}9.4{\mu}mol\;mg^{-1}$) and significant improvement of activities of glutathione (GSH) ($27.2{\pm}5.0{\mu}mol\;mg^{-1}$) in hippocampus. We conclude that treatment with safflower attenuated learning and memory deficits, and neuronal cell loss induced by global cerebral ischemia. These results suggest that safflower may be a potential candidate for the treatment of vascular dementia.

Protective Effects of Combination of Carthamus tinctorius L. Seed and Taraxacum coreanum on Scopolamine-induced Memory Impairment in Mice (홍화씨와 흰민들레 복합물의 Scopolamine 유도 기억력 손상에 대한 보호 효과)

  • Kim, Ji Hyun;He, Mei Tong;Kim, Min Jo;Park, Chan Hum;Lee, Jae Yang;Shin, Yu Su;Cho, Eun Ju
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.85-94
    • /
    • 2020
  • Background: Alzheimer's disease (AD) is caused by various factors, such as cholinergic dysfunction, regulation of neurotrophic factor expression, and accumulation of amyloid-beta. We investigated whether or not a combination of Carthamus tinctorius L. seed and Taraxacum coreanum (CT) has a protective effect on scopolamine-induced memory impairment in a mouse model. Methods and Results: Mice were orally pretreated with CT (50, 100 and 200 mg/kg/day) for 14 days, and scopolamine (1 mg/kg/day) was injected intraperitoneally before subjecting them to behavior tests. CT-administered mice showed better novel object recognition and working memory ability than scopolamine-treated control mice. In T-maze and Morris water maze tests, CT (100 and 200 mg/kg/day) significantly increased space perceptive ability and occupancy to the target quadrant, respectively. In addition, 100 and 200 mg/kg/day of CT attenuated cholinergic dysfunction through inhibition of butyryl cholinesterase in brain tissue. Furthermore, CT-administered mice showed higher cyclic adenosine monophosphate-response element-binding protein (CREB) levels and lower amyloid precursor protein (APP) levels compared to scopolamine-treated control mice. Conclusions: CT improved scopolamine-induced memory impairment through inhibition of cholinergic dysfunction, up-regulation of CREB, and down-regulation of APP. Therefore, CT could be a useful therapeutic agent for AD with protective effects on cognitive impairment.

Efficient Purification and Chemical Structure ldentification of Carthamin from Carthamus tinctorius (홍화적색소 Carthamin의 효과적인 분리 및 화학구조 분석)

  • Kim, Jun-Beom;Cho, Man-Ho;Hahn, Tae-Ryong;Paik, Young-Sook
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.501-505
    • /
    • 1996
  • 우리나라에서 오랫동안 적색 및 황색색소원으로 널리 사용하여 왔던 홍화(Carthamus tinctorius)로부터 전통적인 추출방법을 응용한 새로운 방법을 사용하여 적색소를 효과적으로 분리정제하였다. 홍화꽃잎을 물 및 메탄올로 처리하여 황색소를 제거한 다음 건조파쇄하여 0.5 M $Na_2CO_3$로 홍색소를 추출하고 0.5 M citrate 수용액으로 침전시킨 후 cellulose 흡착, Sephadex LH-20 관크로마토그라피로 분리정제하였다. 분리정제된 적색소는 $300^{\circ}C$에서 분해되었고 silica gel TLC 상에서 BAW(n-BuOH : HOAc : $H_2O$=4 : 1 : 5)로 전개하였을 때 $R_f$값이 0.56이었다. 에탄올 용액에 녹인 적색소의 UV/Vis 흡수스펙트럼은 519, 372, 311, 244 nm에서 최대 흡수피크를 나타내었고, IR 스펙트럼은 특히 $3400\;cm^1$ 넓은 영역에서 hydroxyl기에 의한 강한 흡수띠를 보여주었다. $^{1}H$$^{13}C$ NMR data로 부터 enolized ${\beta}-triketone$, p-hydroxycinnamoyl, methine 및 glucosyl moieties를 확인하였고 그 값을 제시하였다. 이상의 data를 문헌과 비교한 결과 분리한 홍화적색소의 화학구조는 $6-{\beta}-D-glucopyranosyl-2-[[3-{\beta}-D-glucopyranosyl-2,3,4-trihydroxy-5-[3#-(4@-hydroxyphenyl)-1#-oxo-2#-propenyl]-6-oxo-1,4-cyclohexadien-1-yl]methylene]-5,6-dihydroxy-4-[3#-(4@-hydroxyphenyl)-1#-oxo-2#-propenyl]-4-cyclohexene-1,3-dione$인 carthamin으로 확인하였다.

  • PDF

Antioxidant Properties and Quantification of Phenolic Compounds from Safflower (Carthamus tinctorius L.) Seeds

  • Kim, Eun-Ok;Oh, Ji-Hae;Lee, Sung-Kwon;Lee, Jun-Young;Choi, Sang-Won
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • The antioxidant properties of twelve phenolic compounds, including matairesinol 4'-O-$\beta$-D-glucoside, 8'-hydroxyarctigenin 4'-O-$\beta$-D-glucoside, matairesinol, 8'-hydroxyarctigenin, N-feruloylserotonin 5-O-$\beta$-D-glucoside, N-(p-coumaroyl)-serotonin-5-O-$\beta$-D-glucoside, N-feruloylserotonin, N-(p-coumaroyl)serotonin, luteolin 7-O-$\beta$-D-glucoside, luteolin, acacetin 7-O-$\beta$-glucuronide, and acacetin, isolated from defatted safflower (Carthamus tinctorius L.) seeds were evaluated with regard to the DPPH, superoxide and hydroxyl radicals. Additionally, levels of phenolic compounds were determined by HPLC in two cultivars of safflower seeds. Among them, four serotonin derivatives showed potent DPPH ($IC_{50}=10.83-21.75\;{\mu}M$) and hydroxyl ($IC_{50}=75.93-374.63\;{\mu}M$) radical scavenging activities, and their activities were significantly stronger than that of ${\alpha}-tocopherol$. Four flavonoids ($IC_{50}=170.65-275.83\;{\mu}M$) and four lignans ($IC_{50}=114.22-406.10\;{\mu}M$) exhibited significant superoxide and hydroxyl radical scavenging activities, respectively, whereas these compounds contained less activity toward the DPPH and hydroxyl radicals than serotonin derivatives. The levels of serotonin derivatives, lignans and flavonoids in safflower seeds of two cultivars ranged from 49.30 to 260.40, 3.72 to 158.90, and 11.72 to 214.97 mg% (dry base), respectively. Of the two cultivars, 'Cheongsu' had somewthat higher concentrations of phenolic compounds than 'Uisan'. These results suggest that phenolic compounds in safflower seeds may playa role as protective phytochemical antioxidants against reactive oxygen-mediated pathological diseases.

Properties of the Chemical Composition of Safflower (Carthamus tinctorius L.) sprout (홍화(Carthamus tinctorius L.) 순의 이화학적 특성)

  • 김성규;차재영;정순재;정정한;최용락;조영수
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.68-73
    • /
    • 2000
  • In order to develop new materials for the functional food, the components of safflower(Carthamus tinctorius L.) sprout was studied. Chemical composition, minerals, amino acids, and fatty acids of the leaf and the stem parts of 2 weeks grown safflower sprout were analyzed. The chemical composition of safflower spout was 12.7% (w/w) moisture, 28.5% crude protein, 10.1% crude fat, and 5.3% crude ash. Mineral contents of the leaf part were P 49%, K 22%, Mg 15%, Ca 10% whereas these of the stem part were K 51%, P 27%, S 10%, Ca 7%, Mg 4%. Other mineral contents were less than 2% in both parts. Especially, Pt was 0.18 ppb and 0.17 ppb in the leaf and the stem parts, respectively. The composition of the amino acid were approximately as follow, the major amino acid in the leaf and the stem were aspartic acid and glutamic acid, the contents of these were 10.7mg/g, 10mg/g in the leaf, 11.3 mg/g, 8.4 mg/g in the stem, respectively. The major fatty acids in the leaf and the stem parts were linoleic acid and $\alpha$-linolenic acid. The linoleic acid (C18:2) in the leaf and the stem parts were 67% (w/w) and 47% whereas the $\alpha$-linolenic acid. The linoleic acid (C18:2) in those parts were 14% (w/w) and 11%, respectively. On the basis of chemical analysis, the safflower sprout showed to have relatively high contents of crude protein and crude fat, minerals including small amount of Pt, polyunsaturated fatty acid as linoleic acid and $\alpha$ -linolenic acid. These results suggested that safflower sprout was found to be a useful material of natural health food for the functional food development.

  • PDF

Agronomic Characteristics and Artificial-cross Method of Collected Safflower (Carthamus tinctorius L.) Germplasm (홍화 수집자원의 작물학적 특성 및 교배 방법)

  • Oh, Myeong Won;Lee, Jeong Hoon;Jeong, Jin Tae;Han, Jong Won;Lee, Sang Hoon;Ma, Kyung Ho;Hur, Mok;Chang, Jae Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.298-309
    • /
    • 2020
  • Background: Safflower (Carthamus tinctorius L.) is a useful medicinal and oil crop in Korea. However, when safflower is cultivated, the flowering period overlaps with the rainy season, and seed maturation is poor. Therefore, this study aimed to use basic research data to develop superior varieties using agronomic characteristics and crossing method. Methods and Results: A total of 34 safflower germplasms were sown and their agronomic characteristics were investigated. Based on these investigations, the cultivar 'ui-san-hong-hwa' was selected as the mother plant, and 'Myanmar safflower' (Hsu Pan) was selected as the father plant. In addition, we developed a floret-protecting cap to cover florets after emasculation during the artificial crossing. When florets were protected by the cap, the seed setting rate increased in comparison to that in the non-covered florets. Conclusions: Agronomic characteristics can contribute to developing suitable varieties. The results suggest that the protection cap will be helpful in breeding without the floral organ drying. This study contributes an efficient breeding method to develop new safflower varieties.

A Plant Metabolomic Approach to Identify the Difference of the Seeds and Flowers Extracts of Carthamus tinctorius L.

  • Ozan Kaplan;Nagehan Saltan;Arzu Kose;Yavuz Bulent Kose;Mustafa Celebier
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.42-47
    • /
    • 2023
  • Carthamus tinctorius L. (known as safflower) is a valuable oil plant whose importance is increasing rapidly in the world due to its high adaptation to arid regions. The seeds of this unique plant are especially used in edible oil, soap, paint, varnish and lacquer production. Its flowers are used in vegetable dye production and medicinal purposes beside its features as a coloring and flavoring in food. After the oil is removed, the remaining pulp and plant parts are used as animal feed, and dry straw residues are used as fuel. Beside all these features, its usage as a herbal medicinal plants for various diseases has gained importance on recent years. In this study, it was designed a plant metabolomic approach which transfers all the recent data processing strategies of untargeted metabolomics in clinical applications to the present study. Q-TOF LC/MS-based analysis of the extracts (70% ethanol, hexane, and chloroform) for both seed and flowers was performed using a C18 column (Agilent Zorbax 1.8 µM, 100 × 2.1 mm). Differences were observed in seed and fruit extracts and these differences were visualized using principal component analysis (PCA) plots. The total number and intersections of the peaks in the extracts were visualized using peak count comparison graph. Based on the experimental results, the number of the detected peaks for seeds was higher than the ones for the flowers for all solvent systems to extract the samples.