• 제목/요약/키워드: carrier-phase measurements

검색결과 103건 처리시간 0.064초

Relationship between Carrier Concentration and Superconducting Transition Temperature in Bi-Sr-Ca-Cu-O Superconductor

  • Kim, Myung Chul;Park, Soon Ja
    • 분석과학
    • /
    • 제5권2호
    • /
    • pp.223-228
    • /
    • 1992
  • 초산염(acetate)을 출발원료로 하여 $Bi_2Sr_2Ca_2Cu_3Oy$계 단일상 고온초전도체를 합성하려 하였으며 그 초전도상의 형성과정을 초전도전이온도 $T_c$ 및 전하나르게 농도와의 상관관계로부터 설명하고자 하였다. 초전도전이온도 $T_c$는 전기저항밀도 및 자화율을 측정하여 결정하였다. 시료로는 상기의 초전도체 출발조성물의 하소분말에 대해 $850^{\circ}C$, $860^{\circ}C$, 그리고 $870^{\circ}C$에서 40시간 동안 공기 중 열처리한 것을 이용하였다. 전하나르게농도는 홀계수를 측정하여 구하였다. 열처리과정 중의 초전도체 형성과정을 세라믹벌크내에 형성된 초전도체의 양 및 전하나르게농도 분포의 상관관계로부터 설명하였다.

  • PDF

Performance Improvement of Wald Test for Resolving GPS Integer Ambiguity Using a Baseline-Length Constraint

  • Lee Eun-Sung;Chun Se-Bum;Lee Young-Jae;Kang Tea-Sam;Jee Gyu-In;Abdel-Hafez Mamoun F.
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.333-343
    • /
    • 2006
  • In this paper, the baseline-length information is directly modeled as a measurement for the Wald test, which speeds up the resolution convergence of the integer ambiguity of GPS carrier phase measurements. The convergent speed improvement is demonstrated using numerical simulation and real experiments. It is also shown that the integer ambiguities can be resolved using only four actual satellite measurements with very reasonable convergence speed, if the baseline-length information is used just like one additional observable satellite measurement. Finally, it is shown that the improvement of convergence speed of the Wald test is due to the increase of the probability ratio with the use of the baseline-length constraint.

Performance Evaluation of Ionosphere Modeling Using Spherical Harmonics in the Korean Peninsula

  • Han, Deokhwa;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 2013
  • The signal broadcast from a GPS satellite experiences code delay and carrier phase advance while passing through the ionosphere, which causes a signal error. Many ionosphere models have been studied to correct this ionospheric delay error. In this paper, the ionosphere modeling for the Korean Peninsula was carried out using a spherical harmonics based model. In contrast to the previous studies, we considered a real-time ionospheric delay correction model using fewer number of basis functions. The modeling performance was evaluated by comparing with a grid model. Total number of basis functions was set to be identical to the number of grid points in the grid model. The performance test was conducted using the GPS measurements collected from 5 reference stations during 24 hours. In the test result, the modeling residual error was smaller than that of the existing grid model. However, when the number of measurements was small and the measurements were not evenly distributed, the overall trend was found to be problematic. For improving this problem, we implemented the modeling with additional virtual measurements.

Quality Assessment of GPS L2C Signals and Measurements

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.13-20
    • /
    • 2021
  • A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it's expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

이차원 자세 측정용 GPS 수신기 설계 (Design of a Two-dimensional Attitude Determining GPS Receiver)

  • 손석보;박찬식;이상정
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.131-139
    • /
    • 2000
  • A design of CPS attitude determination system is described in this paper. The designed system is a low cost high precision 24 channel single frequency GPS(Global Positioning System) receiver which provides a precise absolute heading and pitch (or roll) as well as a position. It uses commercial chip-set and consists of two RF parts, two signal-tracking parts, a processor, memory parts and I/Os. In order to determine precise attitude, accurate carrier phase measurements and an efficient integer ambiguity resolution method are required. To meet these requirements, a PLL (Phase Locked Loops) is designed, and an algorithm called ARCE (Ambiguity Resolution with Constraint Equation) is adopted. The hardware and software structure of the system will be described, and the performance evaluated under various conditions will be presented. The test results will promise that more reliable navigation system be possible because the system provides all navigational information such as position, velocity, time and attitude.

  • PDF

GPS 이중주파수 측정치를 이용한 효율적인 실시간 미지정수 결정방법 (An Effective Real-Time Integer Ambiguity Resolution Method Using GPS Dual Frequency)

  • 손석보;박찬식;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.719-726
    • /
    • 2000
  • A real-time precise positioning is possible with GPS carrier phase measurements with efficient integer ambiguity resolution techniques. It is known that more reliable and fast integer ambiguity resolution is possi-ble as the number of measurements increases. Most precise positioning systems use dual frequency measurements and the wide-lnae technique to resolve integer ambiguity. The wide-lane technique magnifies the measurement noise while it reduces the number of candidates to be examined. In this paper a new integer ambiguity resolution method using dual frequency is proposed The proposed method utilizes the relationship between the wide-lane single frequency and the narrow-lane ambiguities to resolve narrow-lane integer ambiguity after fixing the wide-lane integer ambiguity. Experiments with real data show that the proposed method gives fast and reliable results.

  • PDF

Evaluation of Single-Frequency Precise Point Positioning Performance Based on SPARTN Corrections Provided by the SAPCORDA SAPA Service

  • Kim, Yeong-Guk;Kim, Hye-In;Lee, Hae-Chang;Kim, Miso;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.75-82
    • /
    • 2021
  • Fields of high-precision positioning applications are growing fast across the mass market worldwide. Accordingly, the industry is focusing on developing methods of applying State-Space Representation (SSR) corrections on low-cost GNSS receivers. Among SSR correction types, this paper analyzes Safe Position Augmentation for Real Time Navigation (SPARTN) messages being offered by the SAfe and Precise CORrection DAta (SAPCORDA) company and validates positioning algorithms based on them. The first part of this paper introduces the SPARTN format in detail. Then, procedures on how to apply Basic-Precision Atmosphere Correction (BPAC) and High-Precision Atmosphere Correction (HPAC) messages are described. BPAC and HPAC messages are used for correcting satellite clock errors, satellite orbit errors, satellite signal biases and also ionospheric and tropospheric delays. Accuracies of positioning algorithms utilizing SPARTN messages were validated with two types of positioning strategies: Code-PPP using GPS pseudorange measurements and PPP-RTK including carrier phase measurements. In these performance checkups, only single-frequency measurements have been used and integer ambiguities were estimated as float numbers instead of fixed integers. The result shows that, with BPAC and HPAC corrections, the horizontal accuracy is 46% and 63% higher, respectively, compared to that obtained without application of SPARTN corrections. Also, the average horizontal and vertical RMSE values with HPAC are 17 cm and 27 cm, respectively.

VOC 회수를 위한 이젝터 시스템에 관한 수치모사 및 실험적 연구 (Numerical Simulation and Experimental Study on an Ejector System for VOC Recovery)

  • 김현동;이동엽;김윤기;정원택;안주하;김경천
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.54-60
    • /
    • 2011
  • This paper is a basic study on volatile organic compounds(VOC) recovery system in a crude oil carrier. VOC is easily evaporated in cargo tankers during loading and transportation of crude oil, causes serious environmental contamination and a huge economic loss. An ejector system is designed to mix VOC gas into crude oil flow to reduce VOC concentration. Detail two-phase flow inside the ejector is simulated using a commercial CFD code. To verify the numerical prediction, a scale-down experiment is conducted. Instead of crude oil and VOC, water and air are used as the working fluids. Flow characteristics and main parameters are obtained by two-phase flow visualization and PIV measurements. Air volume flow rate induced by the ejector is compared with respect to the volume flow rate of water using experimental and numerical results. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

혼합 상의 바나듐 산화물 박막 제작 및 에탄올 가스 감지 특성 연구 (Synthesis of Mixed Phase Vanadium Oxides Thin Films and Their Ethanol Gas Sensing Properties)

  • 한수덕;강종윤
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.29-33
    • /
    • 2018
  • Using a vanadium dioxide ($VO_2$) source, highly pure and amorphous vanadium oxide (VO) thin films were deposited using an e-beam evaporator at room temperature and high vacuum (<$10^{-7}$ Torr). Then, by controlling the post-annealing conditions such as $N_2:O_2$ pressure ratio and annealing time, we could easily synthesize a homogeneous $VO_2$ thin film and also mixed-phase VO thin films, including $VO_2$, $V_2O_5$, $V_3O_7$, $V_5O_9$, and $V_6O_{13}$. The crystallinity and phase of these were characterized by X-ray diffraction, and the surface morphology by FE-SEM. Moreover, the electrical properties and ethanol sensing measurements of the VO thin films were analyzed as a function of temperature. In general, mixed-phases as a self-doping effect have enhanced electrical properties, with a high carrier density and an enhanced response to ethanol. In summary, we developed an easy, scalable, and reproducible fabrication process for VO thin films that is a promising candidate for many potential electrical and optical applications.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF