• Title/Summary/Keyword: carrier lifetime

Search Result 213, Processing Time 0.03 seconds

Phosphorus Diffusion and Gettering in a Solar Cell Process using UMG Silicon (UMG 실리콘을 이용한 태양전지 공정에서 Phosphorus 확산과 게터링)

  • Yoon, Sung-Yean;Kim, Jeong;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.637-641
    • /
    • 2012
  • Due to its high production cost and relatively high energy consumption during the Siemens process, poly-silicon makers have been continuously and eagerly sought another silicon route for decades. One candidate that consumes less energy and has a simpler acidic and metallurgical purification procedure is upgraded metallurgical-grade (UMG) silicon. Owing to its low purity, UMG silicon often requires special steps to minimize the impurity effects and to remove or segregate the metal atoms in the bulk and to remove interfacial defects such as precipitates and grain boundaries. A process often called the 'gettering process' is used with phosphorus diffusion in this experiment in an effort to improve the performance of silicon solar cells using UMG silicon. The phosphorous gettering processes were optimized and compared to the standard POCl process so as to increase the minority carrier lifetime(MCLT) with the duration time and temperature as variables. In order to analyze the metal impurity concentration and distribution, secondary ion mass spectroscopy (SIMS) was utilized before and after the phosphorous gettering process.

Static and Transient Simulation of High Power IGCT Devices (대용량 IGCT 소자의 정상상태 및 과도상태 특성 해석)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.213-216
    • /
    • 2003
  • Recently a new high power device GCT (Gate Commutated Turn-off) thyristor has been successfully introduced to high power converting application areas. GCT thyristor has a quite different turn-off mechanism to the GTO thyristor. All main current during turn-off operation is commutated to the gate. Therefore, IGCT thyristor has many superior characteristics compared with GTO thyristor; especially, snubberless tum-off capacibility and higher turn-on capacibility. The basic structure of the GeT thyristor is same as that of the GTO thyristor. This makes the blocking voltage higher and controllable on-state current higher. The turn-off characteristic of the GCT thyristor is influenced by the minority carrier lifetime and the performance of the gate drive unit. In this paper, we present turn-off characteristics of the 2.5kV PT(Punch-Through) type GCT as a function of the minority carrier lifetime and variation of the doping profile shape of p-base region.

  • PDF

Transport phenomena of a-Se:As thin film for digital X-ray Conversion Material (디지털 X-선 변환물질을 위한 비소(As) 첨가 비정질 셀레늄(a-Se) 박막의 수송현상)

  • Park, Chang-Hee;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.282-283
    • /
    • 2006
  • The transport phenomena of arsenic (As) doped amorphous selenium(a-Se:As) thin film for digital X-ray conversion material has been reported. The effect of As addition on the carrier mobility and recombination lifetime in a-Se:As sample has been measured using the moving photo-carrier grating (MPG) technique. An Increase in hole mobility and recombination was observed when 0.3% arsenic, was added into a-Se sample, whereas electron mobility decrease with arsenic addition due to the defect density. The fabricated a-Se:03% As device exhibited the highest X-ray sensitivity.

  • PDF

Terahertz Generation and Detection Using InGaAs/InAlAs Multi Quantum Well

  • Park, Dong-U;Han, Im-Sik;No, Sam-Gyu;Ji, Yeong-Bin;O, Seung-Jae;Seo, Jin-Seok;Jeon, Tae-In;Kim, Jin-Su;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.205-205
    • /
    • 2013
  • 테라헤르쯔(terahertz: THz)파는 0.1~10 THz 의 범위로 적외선과 방송파 사이에 광대역 주파수 스펙트럼을 차지하고 있으며 직진성, 투과성, 그리고 낮은 에너지 (meV)를 가지고 있어 비 파괴적이고 무해한 장점을 지니고 있다. Ti:sapphire laser와 같은 femto-pulse source 등이 많은 발전이 되어 현재 많은 연구와 발전이 이루어지고 있다. femto-pulse source를 이용한 THz 응용에서는 높은 저항, 큰 전자 이동도, 그리고 아주 짧은 전하수명의 기판을 요구하는데 저온에서 성장한 (low-temperature grown : LT) GaAs는 격자 내에 Gallium 자리에 Arsenic이 치환 하면서 AsGa antisite가 발생하여 전하수명을 짧아지는 것을 응용하여 가장 많이 이용되고 있다. 현재 THz 응용분야에서 보다 작고 가격경쟁력이 있는 광통신을 이용한 THz photomixer등이 활발히 연구 하고 있다. 광섬유 내에서 손실과 분산이 최소값을 가지는 부분이 1.55 ${\mu}m$ 부근이고 In0.53Ga0.47As 기판을 이용하였을 때 여기에 완벽하게 만족하게 된다. 하지만 LT-InGaAs 의 경우 AsGa antisite로 인하여 carrier lifetime은 짧아지지만 높은 n-type 전하밀도를 가지게 된다. 이때 Be을 doping하여 전하밀도를 보상하여 높은 저항을 유지해야 하는데 Be의 활성화를 위해서는 열처리를 필요로 한다. 하지만 열처리를 하면 carrier lifetime이 길어지기 때문에 carrier lifetime과 저항을 적절히 조율해야 한다. 이는 물질자체의 특성이기 때문에 InGaAs는 GaAs보다 낮은 amplitude와 짧은 cut-off frequency를 가진다. 본 연구에서는 보다 높은 저항을 얻기 위하여 molecular beam epitaxy를 이용하여 semi-insulating InP:Fe 기판위에 격자 정합된 InGaAs:Be/InAlAs multi quantum well (MQW)를 온도별 ($250{\sim}400^{\circ}C$), 주기별 (50~150)로 성장을 하였고 이때 InGaAs layer의 Be doping level은 $2{\times}1018\;cm^{-3}$, Ex-situ annealing은 $550^{\circ}C$에서 10분으로 고정 하였다. THz 발생 실험에서는 InGaAs/InAlAs MQW은 4000 pA로 1,000 pA를 가지는 InGaAs epilayer보다 4배 높은 전류 신호를 얻을 수 있었고 모든 샘플이 2 THz에서 cut-off frequency를 가지고 있었다. THz 검출 실험에서는 LT-InGaAs:Be epilayer LT-InGaAs:Be/InAlAs, HT-InGaAs/InAlAs 샘플이 각각 180, 9000, 12000 pA의 전류신호를 가지고 있었고 모든 샘플이 2 THz에서 cut-off frequency를 가지고 있었다. HT-InGaAs/InAlAs MQW를 이용한 검출실험에서는 InGaAs layer가 defect free이지만 LT-InGaAs:Be/ InAlAs MQW 보다 높은 전류 신호를 얻을 수 있었다. 이는 InAlAs layer가 저항만 높이는 것뿐만 아니라 carrier trapping layer로써의 역할도 하는 것으로 사료된다.

  • PDF

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

The defect nature and electrical properties of the electron irradiated $p^+-n^-$ junction diode (전자 조사된 $p^+-n^-$ 접합 다이오드의 결함 특성과 전기적 성질)

  • 엄태종;강승모;김현우;조중열;김계령;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • It is essential to increase the switching speed of power devices to reduce the energy loss because high frequency is commonly used in power device operation these days. In this work electron irradiation has been conducted to reduce the lifetime of minority carriers and thereby to increase the switching speed of a$p^+- n^-$ junction diode. Effects of electron irradiation on the electrical properties of the diode are reported The switching speed is effectively increased. Also the junction leakages and the forward voltage drop which are anticipated to increase are found to be negligible in the $p^+- n^-$ junction diodes irradiated with the optimum energy and dose. The analysis results of DLTS and C-V profiling indicate that the defects induced by electron irradiation in the silicon substrate are donor-like ones which have the energy levels of 0.284 eV and 0.483 eV. Considering all the experimental results in this study, it might be concluded that electron irradiation is a very useful technique in improving the switching speed and thereby reducing the energy loss of $p^+- n^-$ junction diode power devices.

Dependence of Device Performance and Reliability on Channel Direction in PMOSFET's (PMOSFET에서 채널 방향에 대한 소자 성능 의존성)

  • Bok, Jung-Deuk;Park, Ye-Ji;Han, In-Shik;Kwon, Hyuk-Min;Park, Byoung-Seok;Park, Sang-Uk;Lim, Min-Gyu;Chung, Yi-Sun;Lee, Jung-Hwan;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.431-435
    • /
    • 2010
  • In this paper, we investigated the dependence of device performance and hot carrier lifetime on the channel direction of PMOSFET. $I_{D.sat}$ vs. $I_{Off}$ characteristic of PMOSFET with <100> channel direction is greater than that with <110> channel direction because carrier mobility of <100> channel direction is greater than that of <110> channel direction. However, hot carrier lifetime for <110> channel direction is much lower than that with <110> channel due to the greater impact ionization rate in the <100> channel direction. Therefore, concurrent consideration of reliability characteristics and device performance is necessary for channel strain engineering of MOSFETs.

$SiN_x$ Film Deposited by Hot Wire Chemical Vapor Deposition Method for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 적용을 위한 HWCVD $SiN_x$ 막 연구)

  • Kim, Ha-Young;Park, Min-Kyeong;Kim, Min-Young;Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • To develop high efficiency crystalline solar cells, the $SiN_x$ film for surface passivation and anti-reflection coating is very important and it is generally deposited by PECVD. In this paper, the $SiN_x$ film deposited by Hot-Wire chemical vapor deposition(HWCVD) that has no plasma damage was studied. First, to optimize the $SiN_x$ film deposition process, $SiH_4$ gas rate and substrate temperature were varied and then refractive index and thickness were measured. When $SiH_4$ gas rate was 22sccm and substrate temperature was $100^{\circ}C$, refractive index was 1.94 and higher than that of other process conditions. Second, the lifetime was measured by varying the annealing temperature and time. The annealing process was made from 5 to 30 minutes at $300{\sim}500^{\circ}C$. When the annealing temperature was $100^{\circ}C$ and time was 10minute, the lifetime was the highest. The lifetime of annealed samples was also measured after the firing process at $975^{\circ}C$. Although the lifetime of all samples was decreased by firing process, the lifetime of annealed samples before the firing process was higher than that of fired samples only. Finally, the characteristics of solar cells with HWCVD $SiN_x$ film were measured.

A study on Effect of Surface ion Implantation for Suppression of Hot carrier Degradation of LDD-nMOSFETs (LDD-nMOSFET의 핫 캐리어 열화 억제를 위한 표면 이온주입 효과에 대한 연구)

  • Seo, Yong-Jin;An, Tae-Hyun;Kim, Sang-Yong;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.735-736
    • /
    • 1998
  • Reduction of hot carrier degradation in MOS devices has been one of the most serious concerns for MOS-ULSIs. In this paper, three types of LDD structure for suppression of hot carrier degradation, such as spacer-induced degradation and decrease of performance due to increase of series resistance will be investigated. LDD-nMOSFETs used in this study had three different drain structure. (1) conventional ${\underline{S}}urface$ type ${\underline{L}}DD$(SL), (2) ${\underline{B}}uried$ type ${\underline{L}}DD$(BL), (3) ${\underline{S}}urface$urface ${\underline{I}}mplantation$ type LDD(SI). As a result, the surface implantation type LDD structure showed that improved hot carrier lifetime to comparison with conventional surface and buried type LDD structure.

  • PDF

Effect of defects on lifetime of silicon electrodes and rings in plasma etcher (플라즈마 에쳐용 실리콘 전극과 링의 수명에 미치는 결함의 영향)

  • Eum, Jung-Hyun;Chae, Jung-Min;Pee, Jae-Hwan;Lee, Sung-Min;Choi, Kyoon;Kim, Sang-Jin;Hong, Tae-Sik;Hwang, Choong-Ho;Ahn, Hak-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • Silicon electrode and ring in a plasma etcher those are in contact with harsh plasma suffer from periodic heating and cooling during their lifetime. This causes the silicon components failure due to thermal stress remaining the persistent slip bands (PSBs) on their surfaces. The factors that determine the lifetime of silicon electrode and ring were discussed with respect to silicon ingot. The impurity level and the average defect concentration measured with glow discharge mass spectrometer (GDMS) and microwave photo-conductance decay (${\mu}$-PCD) were compared with the grade of silicon ingots those are divided to slip-free and slip-allowed ingot. Some silp-allowed samples showed planar defects along <110> direction on {001} surface. The role of these defects was suggested from the viewpoint of the lifetime of silicon components.