• 제목/요약/키워드: carrier concentration

검색결과 901건 처리시간 0.026초

Preparation of ITO Thin Films for Display Application with $O_2$ Gas Flow Ratio and Input Current by FTS (Facing Targets Sputtering) System

  • Kim, H.W.;Keum, M.J.;Lee, K.S.;Kim, H.K.;Kim, K.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1477-1479
    • /
    • 2005
  • In this work, the ITO thin films were prepared by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying $O_2$ gas flow, input current at room temperature. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measured. The electrical, optical characteristics and surface roughness of prepared ITO thin films were measured. In the results, as increasing $O_2$ gas 0.1[sccm] to 0.7[sccm], resistivity of ITO thin film was increased with a decreasing carrier concentration, $O_2$ gas over 0.3[sccm] the carrier mobility have a similarly value. Transmittance of prepared ITO thin films were improved at increasing $O_2$ gas 0.1[sccm] to 0.7[sccm]. And transmittance of all of the prepared ITO thin films was over 80%. We could obtain resistivity $6.19{\times}10^{-4}[{\omega}{\cdot}cm]$, carrier mobility $22.9[cm^2/V{\cdot}sec]$, carrier concentration $4.41{\times}10^{20}[cm^{-3}]$ and transmittance over 80% of ITO thin film prepared at working pressure 1mTorr, input current 0.4A without any substrate heating.

  • PDF

가압 유동층 반응기에서 산소공여입자의 합성가스 연소 특성 (Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 박상수;이동호;최원길;류호정;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-92
    • /
    • 2012
  • Syngas combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using simulated syngas and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction conditions and no NO emission at oxidation conditions. Moreover, OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration with temperature. However, fuel conversion and $CO_2$ selectivity increased and CO emission decreased as pressure and gas residence time increased.

회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성 (Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor)

  • 류호정;김경수;박영성;박문희
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향 (Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 류호정;박상수;문종호;최원길;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

$Al_{x}Ga_{1-x}Sb$ 결정 성장과 전기적 특성 (The Crystal Growth and Electrical Characteristics of $Al_{x}Ga_{1-x}Sb$)

  • 이재구;정성훈;송복식;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.185-188
    • /
    • 1996
  • The doped n-type $Al_{x}Ga_{1-x}Sb$ crystals were grown by the vertical Bridgman method at composition ratio x=0, x=0.1, x=02 respectively. The lattice constants of the $Al_{x}Ga_{1-x}Sb$ crystals were 6.096${\AA}$, 6.097${\AA}$, 6.106${\AA}$ at composition ratio respectively. The carrier concentration, the resistivity, and the carrier mobility measured by the Van der Pauw method at x-0 were n≡1 x $10^{17}$$cm^{-3}$, $\rho$≡0.15 ${\Omega}$-cm, ${\mu}$$_{n}$≡500 $\textrm{cm}^2$$V^{-1}$$sec^{-1}$ at 300K. The carrier concentration, the resistivity, and the carrier mobility measured by the Van der Pauw method at x=0.1 were n≡2.96 x $10^{15}$$cm^{-3}$, $\rho$≡103 $\textrm{cm}^2$$V^{-1}$$sec^{-1}$ at 300K.

  • PDF

D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계 (Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films)

  • 이정일;최시경
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석 (Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection)

  • 이재성
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

ZnO 막막 센서의 TMA 가스 검지 특성 분석 (The analysis on TMA gas-sensing characteristics of ZnO thin film sensors)

  • 류지열;박성현;최혁환;김진섭;이명교;권태하
    • 전자공학회논문지D
    • /
    • 제34D권12호
    • /
    • pp.46-53
    • /
    • 1997
  • The TMA gas sensors are fabricated with the ZnO-based thin films grown by a RF magnetron sputtering method. The hall effect measurement and AES analysis are carried out to investigate the effects of the sputtering gases and dopants which effect on the electrical resistivity and sensitivity to TMA gas. We measure the cfhanges of the surface carrier concentration, haall electron mobility, electrical resistivity, surface condition, and depth profile of the films. The ZnO-based thin film sensors sputtered in oxygen, or added with dopants showed a high sruface carrier concentration, film sensors sputtered in oxygen and doped with 4.0 wt.% $Al_{2}$O$_{3}$, 1.0 wt.% TiO$_{2}$, and 0.2 wt% v$_{2}$O$_{5}$ showed the highest surface carrier concentration of 5.952 * 10$^{20}$ cm$^{-3}$ , hall electron mobility of 176.7 cm$^{2}$/V.s, lowest electrical resistivity of 6*10$^{-5}$ .ohm.cm and highest sensitivity of 12. These results were measured at a working temperature of 300.deg. C to 8 ppm TMA gas.

  • PDF

튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석 (Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace)

  • 배귀남;현정은;이태규;정종수
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

GZO 박막에 대한 비정질 구조에 따른 산소공공과 전하농도의 연관성에 대한 연구 (A Study on the Relationship between Oxygen and Carrier Concentration in a GZO Film on an Amorphous Structure)

  • 김도형;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제14권4호
    • /
    • pp.25-29
    • /
    • 2015
  • In this study, RF magnetron sputtering was used to investigate the relationship between oxygen vacancy and carrier concentration in a GZO film on an amorphous structure. RF power was fixed at 50W and Ar flow was changed on a glass plate to create a thin film at room temperature. The transmittance of Al-adopted amorphous GZO was measured at 85% or higher; therefore, the transmittance was shown to be outstanding in all films. The hall mobility was also shown to be higher at the film showing the high transmittance at a short-wavelength, whereas the optical energy gap was shown to be higher at the film with high oxygen vacancy. The oxygen vacancy at the amorphous oxide semi-conductor increased the optical energy gap while it was not directly involved in increasing the mobility. The oxygen vacancy increases the carrier concentration while lowering the quality of amorphous structure; such factor, therefore affected the mobility. The increase of amorphous property is a direct way to increase the mobility of amorphous oxide semi-conductor.