• 제목/요약/키워드: carotenoids

검색결과 492건 처리시간 0.029초

Carotenoids: Functions and Recent Research Progress

  • Yeum, Kyung-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제1권2호
    • /
    • pp.256-261
    • /
    • 1996
  • Carotenoids are abundant int he Korean food supply. The intake of foods rich in carotenoids appears to be associated with optimal health, and a reduction in the risk of cancer, cardiovascular disease, macular degeneration and cataract formation. Specific dietary carotenoids may be responsible for these specific protective effects. Hydrocarbon carotenoids such as $\alpha$-,$\beta$-carotenes and lycopene may reduce the risk of cancer and heart disease, whereas oxygenated carotenoids, such as lutein and zeaxanthin, may be important in protection of the eye. Dietary carotenoids, such as lutein, cryptoxanthin, $\alpha$-carotene, $\beta$-carotene and lycopene can be readily obtained from the diet, Green leafy vegetables, such as spinach and broccoli, contain both oxygenated and hydrocarbon carotenoids ; yellow or orange vegetables, such as carrots, have high levels of $\alpha$-carotene and $\beta$-carotene ; and tomatoes contain high amounts of lycopene. Besides being important vitamin A sources, provitamin A carotenoids such as $\alpha$-carotene, $\beta$-carotene and cryptoxanthin, participate in the cell defense systems that are associated with radical quenching. Non-provitamin A carotenoids, such as lutein and lycopene, major carotenoids in human plasma, have also been reported to possess strong antioxidant capability. The alteration of dietary sources of carotenoids can modify their levels in the circulation and target tissues, and thus prevent or delay the onset of these chronic diseases.

  • PDF

양식 담수어 및 해산어의 사료 Carotenoids 대사의 비교와 체색개선에 미치는 영향 (Comparison of Dietary Carotenoids Metabolism and Effects to Improve the Body Color of Cultured Fresh-water Fishes and Marine Fishes)

  • 하봉석;권문정;박미연;백승한;김수영;백인옥;강석중
    • 한국식품영양과학회지
    • /
    • 제26권2호
    • /
    • pp.270-284
    • /
    • 1997
  • 무지개 송어, 산천어, 뱀장어, 볼락 및 우럭에 대한 사료 carotenoids의 체내대사와 체색 개선효과를 검토하기 위하여, 사료에 ${\beta}-carotene$, lutein, canthaxanthin, astaxanthin 및 ${\beta}-apo-8’-carotenal$을 각각 첨가하여 4 내지 5주간 사육하여 표피의 carotenoids 성분의 변화를 분석, 비교한 결과는 다음과 같다. 무지개 송어 표피의 carotenoids 조성은, zeaxanthin, ${\beta}-carotene$ 및 canthaxanthin이 주성분이였으며, 그 외 lutein, isocryptoxanthin 및 salmoxanthin을 소량 성분으로 함유하며, 표피의 carotenoids 축적율은 canthaxanthin 첨가구에서 높게 나타나 체색 선명화 효과가 가장 컸으며, astaxanthin, ${\beta}-carotene$ 첨가구의 순으로 나타났다. 무지개 송어 표피에서의 carotenoids 대사경로는, ${\beta}-carotene$이 isocryptoxanthin, echinenone 및 canthaxanthin을 경유하여 astaxanthin으로 lutein은 canthaxanthin으로 산화되고, canthaxanthin은 isozeaxanthin을 경유하여 ${\beta}-carotene$으로 환원되며 astaxanthin은 triol을 경유하여 zeaxanthin으로 환원되는 대사경로를 추정할 수 있었다. 산천어 표피의 carotenoids 조성은, zeaxanthin이 주성분이며, 그 외 triol, lutein, tunaxanthin, ${\beta}-carotene$, ${\beta}-cryptoxanthin$ 및 canthaxanthin을 소량 성분으로 함유하며, 표피의 carotenoids 축적율은 canthaxanthin 첨가구에서 높게 나타나 체색 선명화 효과가 가장 컸으며, lutein, ${\beta}-carotene$ 첨가구의 순으로 나타났다. 산천어 표피에서의 carotenoids 대사경로는, ${\beta}-carotene$이 zeaxanthin으로 산화되고, lutein은 tunaxanthin을 경유하여 zeaxanthin으로 환원되고, canthaxanthin은 ${\beta}-carotene$을 경유하여 zeaxanthin으로 산화되며 astaxanthin은 triol을 경유하여 zeaxanthin으로 환원되는 대사경로를 추정할 수 있었다. 뱀장어 표피의 carotenoids 조성은, ${\beta}-carotene$이 주성분이였으며, 그 외 lutein, zeaxanthin 및${\beta}-cryptoxanthin$등이 소량 성분으로 함유하며, 표피의 carotenoids 축적율은 lutein 첨가구에서 높게 나타나 체색 선명화 효과가 가장 컸었고, canthaxanthin astaxanthin 첨가구의 순으로 나타났다. 뱀장어 표피에서의 carotenoids 대사경로는, ${\beta}-carotene$과 lutein은 그대로 축적되며, canthaxanthin은 ${\beta}-carotene$으로 그리고 astaxanthin은 zeaxanthin으로 환원되는 대사경로를 추정 할 수 있었다. 볼락 표피의 carotenoids 조성은, zeaxanthin, ${\beta}-carotene$, tunaxanthin A, tunaxanthin B, tunaxanthin C 및 lutein이 주성분이였으며, 그 외 ${\beta}-cryptoxanthin$, ${\alpha}-cryptoxanthin$, astaxanthin을 소량 성분으로 함유하며, 표피의 carotenoids 축적율은 lutein 첨가구에서 높게 나타나 체색 선명화 효과가 가장 컸으며, ${\beta}-carotene$, canthaxanthin 첨가구의 순으로 나타났다. 볼락 표피에서의 carotenoids의 대사경로는, ${\beta}-carotene$은 lutein으로 산화되며, lutein, canthaxanthin astaxanthin 및 ${\beta}-apo-8'-carotenal$은 zeaxanthin을 경유하여 tunaxanthin으로 각각 산화 및 환원되는 대사경로를 추정할 수 있었다. 우럭 표피의 carotenoids 조성은, ${\beta}-carotene$, astaxanthin 및 zeaxanthin이 주성분이였으며, 그 외 ${\alpha}-cryptoxanthin$, ${\beta}-cryptoxanthin$, lutein 및 canthaxanthin을 소량 성분으로 함유하며, 표피의 carotenoids 축적율은 lutein 첨가구에서 높게 나타나 체색 선명화 효과가 가장 컸으며, canthaxanthin, ${\beta}-carotene$ 첨가구의 순으로 나타났다. 우럭 표피에서의 carotenoids 대사경로는 ${\beta}-carotene$${\beta}-cryptoxanthin$으로 산화되고, lutein은 ${\alpha}-cryptoxanthin$을 경유하여 ${\beta}-carotene$으로 환원되고, canthaxanthin은 ${\beta}-cryptoxanthin$, zeaxanthin을 경유하여 ${\alpha}-cryptoxanthin$으로 환원되며, astaxanthin은 isocryptoxanthin, zeaxanthin을 경유하여 tunaxanthin으로 대사되며, ${\beta}-apo-8’-carotenal$${\beta}-cryptoxanthin$, zeaxanthin을 경유하여 ${\alpha}-cryptoxanthin$으로 환원되는 대사경로를 추정할 수 있었다.

  • PDF

미색동물 및 패류의 Carotenoids 색소성분과 돌연변이 및 종양세포 증식의 억제효과 (Carotenoids Components of Tunicata, Shellfishes and Its Inhibitory Effects on Mutagenicity and Growth of Tumor Cell)

  • 하봉석;백승한;김수영
    • 한국식품영양과학회지
    • /
    • 제29권5호
    • /
    • pp.922-934
    • /
    • 2000
  • To investigate the composition of carotenoids present in marine organisms and the biological activity of the carotenoids, carotenoids of the muscles and tunic of tunicates and shellfishes were isolated and identified. Anitmutagenic activities of the carotenoids for S. typhimurium TA 98 and cytotoxic activity for cancer cell lines were determined. Total carotenoid contents in the muscle of tunicata ranged from 18.65 mg% to 2.39 mg%. The highest amount of the total carotenoid was found in the muscle of Halocynthia aurantium, followed by Styela clava (HERDMAN), H. roretzi, H. hilgendorfi f. igaboya, H. hilgendorfi f. retteri, S. plicata (LESUEUR) in order. Interestingly, total carotenoid content in the muscle of S. clava (HERDAMAN) was higher than that of H. roretzi. Total carotenoid content of all tunicata, other than H. aurantium and H. roretzi, were higher in muscle than tunic. The major carotenoids in H. roretzi, H. aurantium, S. plicata (LESUEUR), and S. clava (HERDAMAN) were cynthiaxanthin (25.1∼42.2%), halocynthiaxanthin (9.7∼26.3%), diatoxanthin (8.0∼18.7%) and β-carotene (7.7%∼21.7%). Similarly, cantaxanthin (19.6%), cynthiaxanthin (15.4%), halocynthiaxanthin (14.8%), and (3R, 3'R), (3S, 3'S)-astaxanthin (22.6%) in H. hilgendorfi f. retteri and fucoxanthin (26.6%), cynthiaxanthin (21.8%), halocynthiaxanthin (15.2%), and β-carotene (9.3%) in H. hilgendorfi f. igaboya were major carotenoids in both tunicate. However, the composition of carotenoids in muscle and tunic of tunicata was similar each other. Among the shellfishes examined, total carotenoid content of the muscle of Peronidia venulosa (Schrenck) and Corbicula fluminea, and of the gonad of Atrina pinnata and Chlamys farreri, was ranged from 2.51 to 6.83 mg% which were relatively higher than that of other shellfishes. The composition of the carotenoids of shellfishes, which might depend upon their living environments, was varied. But cynthiaxanthin (15.9∼39.0%) and zeaxanthin (9.6∼21.9%) in gonad of C. farreri, and muscles of Buccinum Volutharpa perryi (JAY) and Crassostrea gigas, cynthiaxanthin (21.5∼48.6%) and mytiloxanthin (14.6%) in muscle of C.fluminea and gonad of A. pinnata, and canthaxanthin (60.6%) and isozeaxanthin (20.5%) in muscles of P. venulosa (Schrenck), and β-carotene (23.7%∼37.8%) and zeaxanthin (18.2∼20.4) in muscles of Semisulcospira libertina and Meretrix lusoria were major carotenoids. Interestingly, diester type-carotenoids were present along with free type-carotenoids in muscles of C. gigas. antimutagenic effect of the carotenoids isolated from tunicata and shellfishes against 2-amino-3-methylimidazol [4,5-f]quinoline (IQ) for S. typhimurium TA 98 was proportional to the amount (20, 50 and 100㎍/plate) treated. Mutagenicity of IQ was significantly reduced by astaxanthin, isozeaxanthin, mytiloxanthin and halocynthiaxanthin, whereas the mutagenicity of aflatoxin B₁(AFB₁) was significantly reduced by β-carotene, isozeaxanthin, and mytiloxnthin. Growth inhibition effect of carotenoids isolated from tunicata and shellfishes for cancer cell was proportional to the amount (5, 10, and 20㎍/plate) treated. The growth of HeLa cell by β-carotene, cynthiaxanthin, astaxanthin and halocynthiaxanthin, NCI-H87 cell by β-carotene, astaxanthin, cynthiaxanthin, and halocynthiaxanthin, HT-29 cell by β-carotene, cynthiaxanthin, mytiloxanthin and halocynthiaxanthin, and MG-63 cells by β-carotene, cynthiaxanthin, astaxanthin, canthaxanthin and halocynthiaxanthin were statistically reduced.

  • PDF

Carotenoids의 생리 기능성과 생산기술 (Biological Functions and Production Technology of Carotenoids)

  • 홍상필;김명희;황재관
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1297-1306
    • /
    • 1998
  • Carotenoids are yellow to orange red pigments that are ubiquitous in the nature and its annual pro duction amounts to one hundred million ton. This review discussed physicochemical properties, antiox idative activity, anticancer activity of carotenoids and its production technology. Carotenoids, mainly used as food colourants, are characterized by its strong reactive conjugated double bonds, related to oxidation by heat, light, acid, and metal ions. The provitamin A activity of carotenoids is higher in trans form than in cis form. Antioxidative properties of carotenoids are related to ionone structure and long, conjugated polyene chain number. In particular, carotene, astaxanthin, canthaxanthin, and lycopene possess strong antioxidant activity, compared with tocopherol. Especially, carotene, astaxanthin, carotene, fucoxanthin, halocynthiaxanthin and peridinin impart strong anticancer activity against lung cancer, breast cancer, buccal pouch cancer and nerve cell cancer. Carotene and astaxanthin are produced by biotechnology using algae such as Dunaliella salina and Haematococcus pluvalis. But the change of cultivation conditions and screening of algae, efficiently producing carotenoids, are needed for its commercial production. Carotenoids are expected to be used in the various fields through explanation of its biological activity and establishment of commercial production technology.

  • PDF

Carotenoid의 생리활성과 함량분석 (Biological Activities and Analysis of Carotenoids in Plants)

  • 김정봉;하선화;이종렬;김행훈;윤상홍;김용환
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.72-78
    • /
    • 2003
  • Carotenoids are the major pigment of pepper (Capsicum annuum) and tomato (Lycopersicon esulentum) which are very important foods in Korea. However the analysis of carotenoids is quite complicated because of their diversity and the presence of cis-trans isomeric forms of these compounds. The objective of this review is to collect the achievements on the field of the chromatographic separation of carotenoids in food and some vegetables, to describe and critically evaluate the techniques, And to compare the benefits and shortcomings of the various chromatographic methods such as adsorption and reversed-phase HPLC and thin-layer chromatography. HPLC equipped with ultra-violet or photodiode array detection is most often employed in routine use for the analysis of carotenoids. Here, the method to analyze carotenoids by HPLC separation after solvent extration and purification from pepper powder samples done in our laboratory is also mentioned.

Carotenoids 화학의 연구방법 (Methodology of Carotenoids Chemistry)

  • 김재웅
    • 한국식품영양학회지
    • /
    • 제14권4호
    • /
    • pp.360-366
    • /
    • 2001
  • This brief review is organized to integrate methodology of carotenoids chemistry from the author's experimental conceps. The majors include classification of carotenoids. extraction·phase separation, purification. crystalyzation, identification, quantitation, spectroscopic properties, organic reactions, and analytical methods of carotenoproteins. The goal is not write a important conceps of carotenoid but to provide a technical methods that may be useful to researchers of natural products chemistry.

  • PDF

식물에서 Carotenoid 생합성 경로와 대사공학적 응용 (Carotenoids Biosynthesis and Their Metabolic Engineering in Plants)

  • 하선화;김정봉;박종석;류태훈;김경환;한범수;김종범;김용환
    • Journal of Plant Biotechnology
    • /
    • 제30권1호
    • /
    • pp.81-95
    • /
    • 2003
  • Carotenoids are synthesized from the plastidic glyceraldehyde-3-phosphate (GAP)/pyruvate pathway in isoprenoids biosynthetic system of plants. They play a crucial role in light harvesting, work as photoprotective agents in photosynthesis of nature, and are also responsible for the red, orange and yellow colors of fruits and flowers in plants. In addition to biological actions of carotenoids as antioxidants and natural pigments, they are essential components of human diet as a source of vitamin A. It has been also suggested that some kinds of carotenoids might provide protection against cancer and heart disease as human medicines. In this article, we review the commercial applications on the basis of biological functions of carotenoids, summarize the studies of genes involved in the carotenoid biosynthetic pathway, and introduce recent results achieved in metabolic engineering of carotenoids. This effort for understanding the carotenoids metabolism will make us to increase the total carotenoid contents of crop plants, direct the carotenoid biosynthetic machinery towards other useful carotenoids, and produce a new array of carotenoids by further metabolizing the new precursors that are created when one or two key enzymes in carotenoid biosynthetic pathway are exchanged through gene manipulation in the near future.

구굴무치과에 속하는 동사리와 얼룩동사리의 Carotenoid 색소성분의 비교 (Comparison of Carotenoid Pigments on Korean Dark Sleeper, Odontobutis platycephala and Dark Sleeper, Odontobutis odontobutis interrupta in the Family Eleotridae)

  • 하봉석;김명선;백승한;김현영;김수영;정계임;권문정
    • 한국식품영양과학회지
    • /
    • 제27권5호
    • /
    • pp.813-820
    • /
    • 1998
  • This study was performed as a part of comparative biochemical studies of carotenoid pigment for the fresh water fish. Carotenoids in integument of Korean dark sleeper, Odontobutis platycephala, and dark sleeper, Odontobutis odontobutis interrupta, which are all the Korean native fresh water fish, were separated by thin layer chromatography, column chromatography and HPLC. The separated carotenoid were then reduced and isomerized by NaBH4 and I2 respectively to investigate UV-Vis spectrophotometeric patterns and chracterized by IR, 1H-NMR and Mass spectrum. The content of total carotenoids in the integument of Korean dark sleeper was 3.01mg% in April, but it was increased to 3.74mg% in September at the near of spawning period. The carotenoid isolated in April consisted of $\beta$-carotene(25.6%), lutein(18.5%) and zeaxanthin(12.0%) as major carotenoids and also contained isocryptoxanthin, diatoxanthin, tunaxanthin, cynthiaxanthin, canthaxanthin and $\alpha$-cryptoxanthin as minor carotenoids. Similarly, in September the carotenoid consisted of $\beta$-carotene(16.5%), zeaxanthin(13.7%) and cynthiaxanthin(13.6%) as major carotenoids and also contained lutein, isocryptoxanthin, tunaxanthin, $\alpha$-cryptoxanthin, diatoxanthin and canthaxanthin as minor carotenoids. At the near of spawning period, the content of cynthiaxanthin and $\alpha$-cryptoxanthin were increased. The content of total carotenoids in the integument of spawning period. T도 carotenoid isolated in April and September consisted of $\beta$-carotene(24.9%, 27.5%), zeaxanthin(14.4%, 20.9%) and lutein(12.6%, 11.4%) as major carotenoids and also contained cynthiaxanthin, tunaxanthin, diatoxanthin, isocryptoxanthin, $\alpha$-cryp-toxanthin and canthaxanthin as minor carotenoids. At the near of spawning period, the content of zeaxanthin was increased, indicating that the carotenoid composition were dependent upon their living conditions and their integument colors. Both Korean dark sleeper and dark sleeper contained high amount of cynthiaxanthin and diatoxanthin which are found as rare carotenoids in the other of fresh water fish. It is interes that they also contained tunaxanthin which is a specific carotenoid in marine fishes.

  • PDF

Excitation energy transfer from carotenoids probed by femtosecond time-resolved fluorescence spectroscopy

  • Akimoto, Seiji;Yamazaki, Iwao;Mimuro, Mamoru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.78-81
    • /
    • 2002
  • Fluorescence rise and decay curves of carotenoids were measured in solutions and in pigment protein complexes with a femtosecond time-resolved fluorescence spectroscopy. For linear carotenoids, the S$_2$ lifetimes showed the maximum value around n = 9-10. The conjugation of a keto-carbonyl group shortened the S$_2$lifetime and prolonged the S$_1$lifetime. The excitation relaxation dynamics within carotenoids and the excitation energy transfer kinetics from carotenoids to chlorophylls are discussed as a function of molecular structure of carotenoids.

  • PDF

폐기 감 과피를 이용한 Carotenoids색소의 추출 (Carotenoids pigment extraction from a wasted persimmon peel)

  • 오상룡;차원섭;박준희;조영제;홍주헌;이원영
    • 한국식품저장유통학회지
    • /
    • 제8권4호
    • /
    • pp.456-461
    • /
    • 2001
  • 감 과피로부터 천연식용색소를 개발하고자 7가지 (acetone, ethanol, ether, ethyl acetate, ethylene chloride, hexan, methanol)의 유기용매로 carotenids를 추출하고 추출수율을 비교하였다. 이들 용매중 아세톤의 추출수율이 가장 크게 나타나 아세톤을 이용한 추출조건의 최적화를 위하여 중심합성계획에 의한 반응표면분석을 행하였다. 시료에 대한 추출온도(X$_1$), 추출시간(X$_2$), 용매비(X$_3$)를 요인변수로 하고 caroteniods 함량(Y)을 종속변수로 하여 5가지 수준으로 추출을 실시하였다. 반응표면분석으로 수립된 회귀식에 대하여 적합결여분석을 행한 결과 유의성이 없어 회귀식이 적절함을 알 수 있었으며 추출온도가 가장 큰 영향을 미치는 변수로 나타났다. carotenoids함량은 추출온도 $25^{\circ}C$부근까지 증가하다. 가 감소하는 것으로 나타났는데 이는 열에 의해 carotenoids의 산화가 촉진된 것으로 생각된다. 또한 carotenoids 함량은 추출시간과 용매비의 증가에 따라 carotenoids함량이 높게 나타났다. 기울기로 보아 추출온도가 추출시간보다 더 큰 영향을 주는 것을 알 수 있었다. 요인 변수 중 추출량에 가장 영향이 적은 용매비를 중심점의 조건으로 고정하고 추출온도와 추출시간만을 변수로 하였을 경우 carotenoids 함량을 최대로 하는 영역의 추출온도와 추출시간을 각각 29$^{\circ}C$, 93min으로 결정할 수 있었다.

  • PDF