• Title/Summary/Keyword: carboxymethyl cellulose sodium salt

Search Result 5, Processing Time 0.023 seconds

Radiation-Crosslinked Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix Hydrogel Films to Prevent Peritoneal Adhesions with physical properties and anti-adhesivity (방사선 가교된 유착방지용 Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix 수화젤 필름의 물리적 특성 및 부착 방지 평가)

  • Jeong, Sung In;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Song, Bo Ram;Kim, Young Jick;Min, Byoung Hyun;Kim, Moon Suk;Lim, Youn-Mook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • In this study, intermolecular crosslinked carboxymethyl cellulose sodium salt (CMC) and porcine Cartilage Acellular Matrix (PCAM) blended hydrogel films for anti-adhesive barriers were prepared by gamma-ray radiation. The effects of the CMC/PCAM concentration and blending ratio on the morphology, gel fraction, gel strength, and degree of swelling were determined. The results indicated that crosslinked CMC/PCAM films show significantly lower the gel-fraction than CMC films. The degree of attachment and proliferation of human vascular endothelial cells on CMC/PCAM films was lower than the CMC films. We show the capacity of the CMC and PCAM to be hydrogel films, and the ability to reduce cell adhesion and proliferation on these films by modification with cell anti-adhesion molecules of PCAM. In conclusion, this study suggests that radiation cross-linked CMC/PCAM hydrogel films endowed with anti-adhesion ligands may allow for improved regulation of cell anti-adhesion behavior for prevent peritoneal adhesions.

Color Fastness of Digital Textile Printing on Silk Fabrics - The effect of the mixed pre-treatment agent (디지털 프린팅 견직물의 색상 변화 및 견뢰도 - 혼합 전처리제의 영향)

  • Jeong, Dong-Seok;Chun, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.15 no.5
    • /
    • pp.808-814
    • /
    • 2013
  • In this study, The mixture of three kinds of pre-treatment agents, Carboxymethyl cellulose sodium salt(CMC), Sodium alginate and Dextrin, have been prepared for the better coloration of digital textile printing. To get sharpness of outline during digital printing process, the optimal formulation is the CMC and Sodium alginate mixture 1:1 ratio by volume. Cyan, Yellow, and Black colours are excellent on the Sodium alginate mixtures. But, Magenta is excellent in the CMC and Dextrin mixture. Sharpness and printability are closely related to viscosity of the mixture. The most optimal sharpness of outline achieved with a consideration of coloring, and field operations account for production when the viscosity of the mixed pre-treatment agent approximately is 10~13 cSt. Change in shade and staining of wash fastness for all the treated samples with the mixtures rated 4-5 grade. Both dry rubbing fastness to shade change and staining are good in the treated samples, whereas wet rubbing fastness rated 2-3 grade. To improve wet rubbing fastness, the Sodium alginate and Dextrine mixture, which rated 3-4 grade for Black color, is applicable. With exception of 3 rating to black color, Light fastness is 4 rating for the remaining three colors in the regardless of treatment condition and mixing of the pre-treatment agent. Dry cleaning fastness of all samples are also 4-5 rating.

Characterization and Preparation of the Hydrogel has Excellent Release Effect of the Active Ingredients Using a Radiation Cross-linking Technology (방사선 가교 기술을 이용한 유효성분 방출력이 우수한 하이드로겔 제조 및 특성 분석)

  • Hwang, Seung-Hyun;Ahn, Sung-Jun;Park, Jong-Seok;Jeong, Sung In;Gwon, Hui-Jeong;Lee, Dong Yun;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 2015
  • Typical radiation cross-linked hydrogels has the characteristic that high water content, but low emission efficiency of active ingredients. Therefore, the hydrogel was prepared by the addition to collagen, which is closely related to the formation of skin wrinkles in biocompatibility and highly water-soluble carboxymethyl cellulose sodium salt (CMC) in order to preparation of hydrogels has excellent emission efficiency of active ingredients. Hydrogels were prepared by dissolving CMC and collagen each of 0.5%, 10% concentration in deionized water. Then, prepared hydrogels are performed by gamma-radiation at 1, 3, 5 kGy irradiation dose. The results showed that the gel fraction of after irradiated 3 kGy hydrogel was higher than before irradiated gelation as long as the 55.3%. The swelling rate of irradiated 3 kGy hydrogel was lower than the non-irradiated sample. The compressive strength of 3 kGy irradiated hydrogel was the highest. The visco-elastic did not show any significant differences, even after irradiation. The CMC hydrogel in this study suggested a potential use as a material for the mask pack for improved emission efficiency of the active ingredient and anti-wrinkles.

Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle (은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조)

  • Park, Jong-Seok;Kuang, Jia;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Fabrication and Characterization of PVA/CMC Hydrogels by Freezing-Thawing Technique and Gamma-Ray Irradiation (동결/융해와 방사선 가교법에 의한 PVA/CMC 수화젤의 제조 및 특성 평가)

  • Jo, Sun-Young;Lim, Youn-Mook;Youn, Min-Ho;Gwon, Hui-Jeong;Park, Jong-Seok;Nho, Young-Chang;Shin, Heung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.551-554
    • /
    • 2009
  • Poly (vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) have received increasing attention in biomedical and biochemical applications because of their properties such as being water-soluble and biocompatible. In this study, a PVA/CMC hydrogel applicable to artificial cartilage was prepared by a freezing-thawing technique and a gamma-ray irradiation. The solid concentration of PVA was 7 wt% and the concentration of CMC was 4 wt%. The freezing/thawing process was repeated twice and the dose of gamma-ray irradiated was 30 kGy. Results of gelation before and after gamma-ray irradiation were similar, but the swelling degree decreased and compressive strength increased. The cytotoxicity was investigated with CCK-8 assay.