Fabrication and Characterization of PVA/CMC Hydrogels by Freezing-Thawing Technique and Gamma-Ray Irradiation

동결/융해와 방사선 가교법에 의한 PVA/CMC 수화젤의 제조 및 특성 평가

  • Jo, Sun-Young (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Youn-Mook (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Youn, Min-Ho (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Gwon, Hui-Jeong (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Seok (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Radiation Research Division for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Heung-Soo (Department of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University)
  • 조선영 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 임윤묵 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 윤민호 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 권희정 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 박종석 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 노영창 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구부) ;
  • 신흥수 (한양대학교 대학원 생명공학과)
  • Published : 2009.11.25

Abstract

Poly (vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) have received increasing attention in biomedical and biochemical applications because of their properties such as being water-soluble and biocompatible. In this study, a PVA/CMC hydrogel applicable to artificial cartilage was prepared by a freezing-thawing technique and a gamma-ray irradiation. The solid concentration of PVA was 7 wt% and the concentration of CMC was 4 wt%. The freezing/thawing process was repeated twice and the dose of gamma-ray irradiated was 30 kGy. Results of gelation before and after gamma-ray irradiation were similar, but the swelling degree decreased and compressive strength increased. The cytotoxicity was investigated with CCK-8 assay.

Poly(vinyl alcohol) (PVA)와 carboxymethyl cellulose sodium salt(CMC)는 우수한 생체적합성 및 수용성으로 인하여 생체의학 분야에서 주목하는 재료 중 하나이다. 본 연구에서는 PVA와 CMC를 동결/융해 과정과 감마선 조사에 의하여 인공연골로서 사용 가능한 수화젤을 제조하였다. 수화젤 제조시 PVA/CMC의 농도는 PVA는 7 wt%, CMC는 4 wt%로 고정시켰으며, 동결/융해 과정은 2회 반복하였으며, 감마선은 30 kGy조사하였다. 방사선 조사 전과 후의 겔화율은 눈에 띄는 차이는 보이지 않았으나 팽윤도는 조사 후에 감소하였으며, 겔강도는 증가하였다.CCK-8 assay에 의하여 세포독성이 없는 것으로 확인되었다. 제조된 PVA/CMC 수화젤은 체내에 삽입되는 인공연골 재료로서 사용가능성을 제시하였다.

Keywords

References

  1. S. W. Kim, S. P. Lee, and J. W. Lee, artificial cartilage, KISTI, Seoul, 2004
  2. S. H. Lee, Ceramist, 7, 47 (2004)
  3. F. H. Silver and Ch. Doillon, Biocompatibility. Interactions of Biological and Implantable Materials, VCH Publ. Inc., New York, 1989
  4. K. R. Park and Y. C. Nho, Polymer(Korea), 25, 728 (2001)
  5. Y. Shin, K. S. Kim, and B. Kim, Polymer(Korea), 32, 421 (2008)
  6. J. M. Rosiak, J. Control. Reasase, 31, 9 (1994) https://doi.org/10.1016/0168-3659(94)90246-1
  7. K. Burczak, T. Fujisato, M. Hatada, and Y. Ikada, Biomaterials, 15, 231 (1994) https://doi.org/10.1016/0142-9612(94)90072-8
  8. T. Hirai, T. Okinaka, Y. Amemiya, K. Kobayashi, M. Hirai, and S. Hayashi, Angew. Makromol. Chem., 240, 213 (1996) https://doi.org/10.1002/apmc.1996.052400120
  9. P. F. Liu, M. L. Zhai, J. Q. Li, J. Peng, and J. L. Wu, Radiat. Phys. Chem., 63, 525 (2002) https://doi.org/10.1016/S0969-806X(01)00649-1
  10. R. A. Wach, H. Mitomo, N. Nagasawa, and F. Yoshii, Radiat. Phys. Chem., 68, 771 (2003) https://doi.org/10.1016/S0969-806X(03)00403-1
  11. A. Santa-Comba, A. Pereira, R. Lemos, D. Santos, J. Amarante, M. Pinto, P. Tavares, and F. Bahia, J. Biomed. Mater. Res., 55, 396 (2001) https://doi.org/10.1002/1097-4636(20010605)55:3<396::AID-JBM1028>3.0.CO;2-Q
  12. C. Xiao and Y. Gao, J. Appl. Polym. Sci., 107, 1568 (2007) https://doi.org/10.1002/app.27203
  13. E. Pines and W. Rins, Macromolecules, 6, 888 (1973) https://doi.org/10.1021/ma60036a020
  14. C. M. Hassan, J. H. Ward, and N. A. Peppas, Polymer, 41, 6729 (2000) https://doi.org/10.1016/S0032-3861(00)00031-8
  15. Y. M. Lim, J. H. Lee, Y. C. Noh, and T. I. Son, J. Radiat. Ind., 1, 53 (2007)
  16. KAERI/RR-2327/2002 (2002)
  17. ASTM, ASTM D 2765-01
  18. E. K. Choi, H. I. Kim, K. R. Park, and Y. C. Nho, J. Korean Ind. Eng. Chem., 14, 505 (2003) https://doi.org/10.1016/j.jiec.2007.12.007
  19. C. Zou and Z. Shen, J. Pharmacol. Toxicol. Methods, 56, 58 (2007) https://doi.org/10.1016/j.vascn.2006.12.005
  20. ISO/EN 10993-5
  21. R. L. Clough and S. W. Shalaby, Radiation Effects on Polymers, Maple Press. Inc., New York, PA, p271 (1990)
  22. C. Tranquilan-Aranilla, R. Yoshii, A. M. Dela Rosa, and K. Makuuchi, Radiat. Phys. Chem., 55, 127 (1999) https://doi.org/10.1016/S0969-806X(98)00317-X
  23. L. F. Miranda, A. B. Lug$\tilde{a}$o, L. D. B. Machado, and L. V. Ramanathan, Radiat. Phys. Chem., 55, 709 (1999) https://doi.org/10.1016/S0969-806X(99)00216-9
  24. K. R. Park, D. P. Kim, and Y. C. Nho, J. Korea Ind. Eng. Chem., 12, 718 (2001)
  25. Manal F. Abou Taleb, N. L. Abd El-Mohdy, and H. A. Abd El-Rehim, J. Hazard. Mater., in press (2009)