• 제목/요약/키워드: carboxyl group

검색결과 258건 처리시간 0.021초

The Crystal Structure of Tolfenamic Acid $(C_{14}H_{12}ClNO_2)$, an Antiinflammatory Fenamate

  • Kim, Yang-Bae;Chung, Uoo-Tae;Park, Il-Yeong
    • Archives of Pharmacal Research
    • /
    • 제19권2호
    • /
    • pp.160-162
    • /
    • 1996
  • The structural analysis of tolfenamic acid, 2-[(3-chloro-2-methylphenyl)-amino]benzoic acid, was performed by single crystal X-ray diffraction technique. The compound was recrystallized from a mixture of ether and toluene in triclinic, space group $P2_1/c, \;with\; \partial=3.914(1), \; b=22.\; 020(2), \; c=14.271(1)\;{\AA}, \beta.=94.68(1)^{\circ}, $ and Z=4. The calculated density is $1.418 g/cm^3$. The structure was solved by the direct method and refined by full matrix least-squares procedure to the final R value of 0.039 for 1773 independent reflections. In the molecule, carboxyl group at the anthranilic acid is coplanar to the phenyl ring. The dihedral angle between the two aromatic rings of the molecule is $44.2^{\circ}$ The molecules are dirnerized through the intermolecular hydrogen bonds at the carboxyl group in the crystal.

  • PDF

Biotinoyl Domain of Human Acetyl-CoA Carboxylase;Structural Insights into the Carboxyl Transfer Mechanism

  • Lee, Chung-Kyung;Cheong, Hae-Kap;Ryu, Kyoung-Seok;Lee, Jae-Il;Jeon, Young-Ho;Cheong, Chae-Joon
    • 한국자기공명학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-13
    • /
    • 2008
  • Acetyl-CoA carboxylase (ACC) catalyzes the first step in fatty acid biosynthesis: the synthesis of malonyl-CoA from acetyl-CoA. As essential regulators of fatty acid biosynthesis and metabolism, ACCs are regarded as therapeutic targets for the treatment of metabolic diseases such as obesity, In ACC, the biotinoyl domain performs a critical function by transferring an activated carboxyl group from the biotin carboxylase domain to the carboxyl transferase domain, followed by carboxyl transfer to malonyl-CoA. Despite the intensive research on this enzyme, only the bacterial and yeast ACC structures are currently available, To explore the mechanism of ACC holoenzyme function, we determined the structure of the biotinoyl domain of human ACC2 and analyze its characteristics using NMR spectroscopy. The 3D structure of the hACC2 biotinoyl domain has a similar folding topology to the previously determined domains from E. coli and P. Shermanii, however, the 'thumb' structure is absent in the hACC2 biotinoyl domain. Observations of the NMR signals upon the biotinylation indicate that the biotin group of hACC2 does not affect the structure of the biotinoyl domain, while the biotin group for E. coli ACC interacts directly with the thumb residues that are not present in the hACC2 structure. These results imply that, in the E. coli ACC reaction, the biotin moiety carrying the carboxyl group from BC to CT can pause at the thumb of the BCCP domain. The human biotinoyl domain, however, lacks the thumb structure and does not have additional non-covalent interactions with the biotin moiety; thus, the flexible motion of the biotinylated lysine residue must underlie the "swinging arm" motion. This study provides insight into the mechanism of ACC holoenzyme function and supports the "swinging arm" model in human ACCs.

부식산(腐植酸)-중금속(重金屬) 착화합물형성(錯化合物形成) 반응(反應)에 대한 Mechanism (Mechanisms of Humic Acid-Heavy Metal Complexation)

  • 이정재;장상문;최정
    • 한국토양비료학회지
    • /
    • 제28권2호
    • /
    • pp.114-122
    • /
    • 1995
  • 토양유기물(土壤有機物)에 의한 중금속(重金屬)의 흡착(吸着)현상을 구명(究明)하기 위하여 이탄토(泥炭土)에서 humic acid를 분리정제(分離精製)하여, humid acid-metal complex 생성반응(生成反應)에 대한 mechanism을 조사(調査)하였다. 1. Humic acid-metal complex의 흡광도(吸光度)는 장파장영역(長波長領域)에서 단파장영역(短波長領域)으로 갈수록 Zn-HA > Cd-HA > Cu-HA의 순(順)으로 증가(增加)하였다. 2. Humic acid의 carboxyl group과 phenolic OH group들이 중금속(重金屬) ion들과 반응(反應)하여 complex를 생성(生成)하였으며 그 생성량(生成量)은 Cu > Zn ≧ Cd의 순(順)이었다. 3. Humic acid-medal complex의 안정도(安定度) 상수(常數)는 pH가 증가(增加)함에 따라 增加하였으며 1차(次) 안정도(安定度) 상수(常數)는 Zn>Cd>Cu 순(順)이었고, 2차(次) 안정도(安定度) 상수(常數)는 Cu>Zn>Cd의 순(順)이었으며, 總安定도 常數는 Cu>Zn>Cd의 순(順)이었다. 4. Humlc acid와 중금속(重金屬)ion들 상호(相互) 간(間)의 평균결합수(平均結合數)는 pH가 증가(增加)함에 따라 Cu>Zn>Cd의 順으고 增加하였다. 5. Humic acid에 의한 중금속(重金屬) ion들의 complex생성과정(生成課程)에서 barboxyl group만이 관여(關與)하는 것과 car-boxyl gruup 및 phenolic OH group이 동시(同時)에 관여(關與)하는 두가지 흡착(吸着)mechanlsm을 제안할 수 있었다.

  • PDF

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

A Study on the Active site of Glucoamylase from Aspergillus shirousamii

  • ;양철학
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.107-111
    • /
    • 1989
  • Glucoamylase was inactivated with 1-ethyl-2-(dimethylaminopropyl)carbodiimide (EDC) at pH 5.0. Time course of inactivation of glucoamylase was at least biphasic. From the results of the titration of SH groups with Ellman's reagent and hydroxylamine treatment at pH 7.0, it was concluded that the crucial sites of modification were carboxyl groups of glucoamylase. The CD spectrum of EDC-modified glucoamylase suggested that the gross conformation of the native enzyme was retained. The inactivation of glucoamylase was reduced remarkably in the presence of maltose. The logarithm of the half-life of the inactivation of glucoamylase by EDC was a linear function of log[EDC] in each stage indicating that one carboxyl group among the modified ones was crucial for inactivation of glucoamylase. The change in the binding affinity due to modification was determined by using an affinity column. It indicates that the carboxyl group of glucoamylase seems to play a role in both, the catalysis and substrate binding in the first stage, but in the second stage the binding affinity is recovered almost up to that of native enzyme.

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

화합물 작용기와 화학구조에 따른 수용액의 빙부착 억제 효과 (The Effect of Ice Adhesion according to Functional Group and Chemical Structure of Additive)

  • 정동열;백종현;강채동;홍희기
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.607-614
    • /
    • 2007
  • This paper investigated that the functional group and chemical structure of additives affect ice adhesion in aqueous solutions cooling with stirring. In order to compare the effect on the ice adhesion in aqueous solutions, the functional group like carboxyl (-COOH), hydroxyl(-OH) or amine($-NH_{2}$) one were compared each other. Among the functional group, the strength of the hydrogen bonding force order is amine, hydroxyl and carboxyl one. It supports that ethylene diamine 7 mass% solution including amine group was effective to suppress the ice adhesion, though it is corrosive. Also, the ice adhesion were effectively resisted and formed lots of ice slurries in cooling experiment of 7 mass% solution of 1, 2-and 1, 3-propanediol which is different molecular structure but equal molecular weight each other.

전자제품 제조용 친환경 점착제의 합성과 물성에 대한 연구 (A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhesive for Manufacturing Electronic Products)

  • 조을룡;오지환;김지현;정현정
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.12-16
    • /
    • 2016
  • Toluene-free pressure sensitive adhesives were synthesized by using butyl acrylate (BA), 2-hydroxy ethyl acrylate, methyl methacrylate, acrylic acid (AA) as monomers and ethyl acetate as a solvent. The polymerization recipes were designed by changing 1, 3, 5 part per hundreds monomer (phm) of AA content on the basis of 100 BA parts. Two crosslinking agents, ethyl glycol diglycidyl ether (EDGE) and isophorone diisocyanate (IPDI) were added to the synthesized polymers to increase adhesion due to crosslinking. In the measurement of properties, holding power, peel strength, and initial tackiness increased with AA content due to crosslinking between carboxyl group in AA and epoxy group in EDGE and isocyanate group in IPDI. In the comparison of two crosslinking agents, EDGE showed better in the three properties than IPDI by better reaction of epoxy group of EDGE to carboxyl group of AA.

6,6-Dichlorobicyclo[3, 1, 0]hexane-3-carboxylic acid의 합성과 분석 (Synthesis and Analysis of 6,6-dichlorobicyclo[3, 1, 0]hexane-3-carboxylic acid)

  • 이광수;양재건
    • 분석과학
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2001
  • 6,6-Dichlorobicyclo[3, 1, 0]hexane-3carboxylic acid를 phase transfer catalyst(PTC)로 benzyl triethylamine chloride(BTEA.Cl)를 사용하여 3-cyclopentenecarboxylic acid로부터 합성하였다. $^1H$ NMR과 $^{13}C$ NMR 분석을 통하여 이 화합물은 boat-like conformation을 갖는 것으로 나타났고 carboxyl group은 trans로 존재하는 것으로 나타났다.

  • PDF

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Inami, Watau;Nanbu, Koichi;Miyakawa, Atsuo;Kawata, Yoshimasa
    • 정보저장시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2012
  • We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.