DOI QR코드

DOI QR Code

Biotinoyl Domain of Human Acetyl-CoA Carboxylase;Structural Insights into the Carboxyl Transfer Mechanism

  • Lee, Chung-Kyung (The Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Cheong, Hae-Kap (The Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Ryu, Kyoung-Seok (The Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Lee, Jae-Il (The Division of Drug Discovely, CrystalGenomics, Inc, Asan Institute for Life Sciences) ;
  • Jeon, Young-Ho (The Magnetic Resonance Team, Korea Basic Science Institute) ;
  • Cheong, Chae-Joon (The Magnetic Resonance Team, Korea Basic Science Institute)
  • Published : 2008.06.20

Abstract

Acetyl-CoA carboxylase (ACC) catalyzes the first step in fatty acid biosynthesis: the synthesis of malonyl-CoA from acetyl-CoA. As essential regulators of fatty acid biosynthesis and metabolism, ACCs are regarded as therapeutic targets for the treatment of metabolic diseases such as obesity, In ACC, the biotinoyl domain performs a critical function by transferring an activated carboxyl group from the biotin carboxylase domain to the carboxyl transferase domain, followed by carboxyl transfer to malonyl-CoA. Despite the intensive research on this enzyme, only the bacterial and yeast ACC structures are currently available, To explore the mechanism of ACC holoenzyme function, we determined the structure of the biotinoyl domain of human ACC2 and analyze its characteristics using NMR spectroscopy. The 3D structure of the hACC2 biotinoyl domain has a similar folding topology to the previously determined domains from E. coli and P. Shermanii, however, the 'thumb' structure is absent in the hACC2 biotinoyl domain. Observations of the NMR signals upon the biotinylation indicate that the biotin group of hACC2 does not affect the structure of the biotinoyl domain, while the biotin group for E. coli ACC interacts directly with the thumb residues that are not present in the hACC2 structure. These results imply that, in the E. coli ACC reaction, the biotin moiety carrying the carboxyl group from BC to CT can pause at the thumb of the BCCP domain. The human biotinoyl domain, however, lacks the thumb structure and does not have additional non-covalent interactions with the biotin moiety; thus, the flexible motion of the biotinylated lysine residue must underlie the "swinging arm" motion. This study provides insight into the mechanism of ACC holoenzyme function and supports the "swinging arm" model in human ACCs.

Keywords

References

  1. P. A. Diana, S. V. Sergio, L. D. R. Alfonso, Arch Med Res., 33, 439-447 (2002) https://doi.org/10.1016/S0188-4409(02)00399-5
  2. J. D. McGarry, N. F. Brown, Eur. J. Biochem., 244, 1-14 (1997) https://doi.org/10.1111/j.1432-1033.1997.00001.x
  3. J. E. Cronan, G. L. Waldrop, Prog Lipid Res., 41, 407-435 (2002) https://doi.org/10.1016/S0163-7827(02)00007-3
  4. Y. Sasaki, Y. Nagano, Biosci Biotechnol Biochem., 68, 1175-1184(2004) https://doi.org/10.1271/bbb.68.1175
  5. L. Tong, Cell Mol Life Sci., 62, 1784-1803 (2005) https://doi.org/10.1007/s00018-005-5121-4
  6. H. Gao, N. Sumanaweera, S. M. Bailer, U. Stochaj, J. Biol. Chem., 278, 25 (2003)
  7. C. R. Eunjoo, E. C. John, J. Biol. Chem., 33, 30806-30812 (2003)
  8. L. Abu-Elheiga, A. Jayakumar, A. Baldini, S. S. Chirals, S. J. Wakil, Proc Natl Acad Sci USA., 92, 4011-4015 (1995) https://doi.org/10.1073/pnas.92.9.4011
  9. J. Widmer, K. S. Fassihi, S. C. Schlichter, K. S. Wheeler, B. E. Crute, N. King, N. Nutil-McMenemy, W. W. Noll, S. Daniel, J. Ha, K. H. Kim, L. A. Witters, J. Biochem., 316, 915-922 (1995)
  10. L. Abu-Elheiga, D. B. Almarza-Ortega, A. Baldini, S. J. Wakil, J. Biol. Chem., 272, 10669-10677 (1997) https://doi.org/10.1074/jbc.272.16.10669
  11. J. R. Knowles, Ann Rev Biochem., 58, 195-221 (1989) https://doi.org/10.1146/annurev.bi.58.070189.001211
  12. S. J. Wakil, J. K. Stoops, V. C. Joshi, Ann Rev Biochem., 52, 537-579 (1983) https://doi.org/10.1146/annurev.bi.52.070183.002541
  13. F. K. Athappilly, W. A. Hendrickson, Structure, 3, 1407-1419 (1995) https://doi.org/10.1016/S0969-2126(01)00277-5
  14. Y. Xiang, W. Dong, S. J. Cylburn, F. S. Michael, B. Dorothy, Biochemistry, 36 15089-15100 (1997) https://doi.org/10.1021/bi971485f
  15. D. V. Reddy, B. C. Shenoy, P. R. Carey, F. D. Sonnichsen, Biochemistry, 39, 2509-2516 (2000) https://doi.org/10.1021/bi9925367
  16. E. C. John, J. Biol. Chem., 276, 37355-37364 (2001) https://doi.org/10.1074/jbc.M106353200
  17. L. Abu-Elheiga, M. M. Martin, A. H. Khaled, J. W. Salih, Science, 291, 2613-2616 (2001) https://doi.org/10.1126/science.1056843
  18. T. Zhang, R. F. Clark, T. M. Hansen, Z. Xin, G. Liu, X. Wang, R. Wang, H. S. Camp, H. S. Beutel, H. Sham, G. Y. Gui, San Francisco: ACS Meeting, 232th (2006)
  19. A. Contreras, S. Molin, J. L. Ramos, Appl Environ Microbiol, 57, 1504-1508 (1991)
  20. P. J. Schatz , Biotechnology., 11, 1138-1143 (1993) https://doi.org/10.1038/nbt1093-1138
  21. F. Delaglio, S. Grzesiek, G. Vuister, G. Zhu, J. Pfeifer, A. Bzx, J. Biomol. NMR, 6, 277-293 (1995)
  22. T. D. Goddard, D. G. Kneller, SPARKY 3, University of California, San Francisco.
  23. S. B. Grzesiek, J. Am. Chem. Soc., 114, 6291-6293 (1992) https://doi.org/10.1021/ja00042a003
  24. M. M. Wittekind, J. Magn. Reson., B101, 201-205 (1993)
  25. M. Ikura, L. E. Kay, A. Bax, Biochemistry, 29, 4659-4667 (1990) https://doi.org/10.1021/bi00471a022
  26. S. B. Grzesiek, J. Anglister, A. Bax, J. Magn. Reson., B101, 114-119(1993)
  27. A. Bax, G. M. Clore, P. C. Driscoll, A. M. Gronenborn, M. Ikura, L. E. Kay, J. Magn. Reson., 87, 620-627 (1990) https://doi.org/10.1016/0022-2364(90)90320-9
  28. N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, I. D. Forman-Kay, L. E. Kay, Biochemistry, 33, 5984-6003 (1994) https://doi.org/10.1021/bi00185a040
  29. G. Cornilescu, F. Delaglio, A. Bax, J. Biomol. NMR, 13, 289-302 (1999) https://doi.org/10.1023/A:1008392405740
  30. T. Herrmann, P. Güntert, K. Wüthrich, J. Mol. Biol., 319, 209-227 (2002) https://doi.org/10.1016/S0022-2836(02)00241-3
  31. C. C. Huang, G. S. Couch, E. F. Pettersen, T. E. Ferrin, Pacific Symp Biocompu., 1, 724 (1996)
  32. A. Nicholls, K. A. Sharp, B. Honig, Proteins Struct Funct Gene., 11, 281-296(1991) https://doi.org/10.1002/prot.340110407
  33. C. S. Anne, D. M. Terrence, w. Fiona, E. C. John, C. W. John, Protein Sci., 10, 2608-2617 (2001) https://doi.org/10.1110/ps.ps.22401
  34. C. S. Anne, W. M. Timothy, C. W. John, John EC. J. Biol. Chem., 274, 1449-1457 (1999) https://doi.org/10.1074/jbc.274.3.1449
  35. B. L. Sibanda, J. M. Thornton, Natur., 316, 170-174 (1985) https://doi.org/10.1038/316170a0
  36. S. Jose, C. S. Anne, E. C. John, J. Biol. Chem., 277, 21604-21609 (2002) https://doi.org/10.1074/jbc.M201928200
  37. Y. Xiang, S. Cylburn, F. S. Michael, B. Dorothy, Protein Sci., 8, 307-317 (1999)
  38. L. R. Emma, S. Ningcheng, J. H. Mark, B. William, C. S. Anne, C. W. John, M. Tim, E. C. John, N. P. Richard, Biochemistry, 38, 5045-5053 (1999) https://doi.org/10.1021/bi982466o