• Title/Summary/Keyword: carbonation test

Search Result 227, Processing Time 0.035 seconds

Evaluation of Durability Properties of Cement Matrix Using the Polymer of Powder Type (분말형 폴리머를 사용한 시멘트 경화체의 내구성 평가)

  • Kim, Seong-Soo;Jung, Ho-Seop;Lee, Jeong-Bae;Yoon, Ha-Young;Koh, Joon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.495-498
    • /
    • 2005
  • It was investigated the durability of the concrete to improve construction materials with polymer cement mortar in this study. With the popularity of repair and rehabilitation material, some mixtures composed of Ethylene Vinyl Acetate(EVA) was studied. Ethylene Vinyl Acetate(EVA) carried out tests to determine its properties which a include: freezing-thawing resistance test, carbonation test, and chemical resistance test. Result of freezing-thawing resistance test, mass change ratio and chemical resistance test, mass change ratio decreased of 12 and $15\~45\%$ as compared with control mortar. Carbonation depth decreased $3.7\~5.6mm$ as polymer-cement ratio increased $1\~4\%$.

  • PDF

An Experimental Study on Solidifying Mat of System Improving for Durability Improving (고화매트의 내구성 향상을 위한 시스템 개선의 실험적 연구)

  • Hong, Sung-Rog;Lee, Jung-Yoon;Kim, Young-Sam;Park, Hun-Il;Cho, Byoung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.108-109
    • /
    • 2014
  • The purpose of this study is to enhance durability of solidifying mat. solidifying mat excellent mechanical properties of geotextile. multi-layer coating system is applied to the mat and the chloride ions penetration resistance, chemical resistance, accelerated carbonation test were evaluated by testing the durability. Durability test results are as follows. chloride ions penetration resistance results are coated mat is approximately 70 % lower than plain. chemical resistance test results are coated mat no discoloration. accelerated carbonation test results are coated mat is approximately 90 % lower than the plain.

  • PDF

Durability Performance of Concrete using Rice Husk Ash

  • Jeong, Euy-Chang;Shin, Sang-Yeop;Kim, Young-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • The purpose of this study was to investigate the durability performance of concrete that includes rice husk ash. Chloride diffusion coefficient obtained through a rapid chloride penetration test and depth of $CO_2$ penetration obtained through a rapid carbonation test were used to evaluate latent durability. Durability characteristics for rice husk ash replacement and age were determined. Through the experiment, it was found that when the replacement ratio of rice husk ash was increased from 0% to 10%, the compressive strength of concrete containing rice husk ash was similar to that of concrete containing silica fume. This shows that the durability performance of concrete containing rice husk is excellent compared to other concretes containing admixtures.

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF

Chemical Attack and Carbonation Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 화학적(化學的) 침식(侵蝕) 및 탄산화 특성(特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Sim, Do-Sik
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of blast-furnace slag on chemical attack and carbonation of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 15%) and slag contents (0%, 30%, 50%). The compressive strengths, chemical attacks resistance and carbonation depth were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive strength of BS-LMC with blast-furnace slag content 30% was quite similar to it of OPC without slag content. The structural quality deterioration was concerned when blast slag content was up to 50%. However, carbonation restraint of BS-LMC with blast-furnace slag 30% was bigger then that of opc. Also, the effects of added latex on OPC and BS-LMC were increased on the carbonation restraint and chemical attacks resistance.

Influence of Carbonation and Freezing-thawing on the Chloride Diffusion in Concrete (탄산화 및 동결융해 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun;Jung, Sang-Hwa;Bok, Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.57-64
    • /
    • 2007
  • Recently, the corrosion of concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation and freezing-thawing action to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The small reduction of relative dynamic elastic modulus induced from freezing-thawing increases the chloride ion penetration depths much. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation or freezing-thawing but the future studies for combined environment will assure the precise assessment.

Evaluation of Durability on the Repair Materials of Concrete Structures (철근이 부식된 콘크리트구조물용 보수재료의 내구성능 평가)

  • 문한영;이창수;김성수;김홍삼;곽도연
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.857-860
    • /
    • 1998
  • Reinforced concrete structure is deteriorated, as time goes on. So many repair materials are developed for the repair. But repair materials have not been adequately applied so far. Because the datum which evaluated the repair materials are not sufficient. The object of this study is estimation f repair materials that is in general use and establish method of application. To acquire the result, we have made experiments on chemical attack, carbonation and chloride permeability test. The carbonation and chloride permeability are very different. Some repair materials are poorer than portland cement mortar.

  • PDF

An Experimental Study on the Properties of High Volume Fly Ash Concrete (플라이애시를 대량 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jang, Jong-Ho;Choi, Sung-Woo;Choi, Hee-Yong;Park, Sun-Gyu;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.549-554
    • /
    • 2000
  • Generally, it is indicated that concrete using fly ash as a part of cement content has lower early strength, and faster carbonation velocity. To improve these problems and provide useful information for high volume fly ash concrete, the properties of concrete - those include slump, bleeding, setting time, compressive strength and carbonation depth etc. - which contained large amount of fly ash as a part of fine aggregate were investigated experimentally. According to test results, it was found that the compressive strength of the concrete increased in early age as well as in long term age with the increase of the fly ash content. And the carbonation depth of concrete using fly ash as a part of fine aggregate was lower than that of plain concrete(FA 0kg/ $\textrm{m}^3$).

  • PDF

A Study on Corrosion Resistance of Reinforced Concrete Structures using Natural Inorganic Minerals (천연 무기 광물계 혼화재료를 혼입한 철근콘크리트 구조물의 부식저항성에 관한 연구)

  • Tae, Sung Ho;Park, Jae Young;Kim, Jae Young;Park, Jae Seung;Kyung, Je Woon;Nam, Ho Yoon
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • As a fundamental study on the corrosion resistance of reinforced concrete structures using Natural Inorganic Minerals exposed to carbonation environment, The test specimens were concrete(W/C=60%) with Natural Inorganic Minerals content of 0%, 10%. Accelerated carbonation and autoclave corrosion accelerated curing were then conducted with them. The corrosion resistance of steel in concrete with Natural Inorganic Minerals content of 0%, 10% was examined by corrosion form, half-cell potential, polarization resistance, corrosion area and weight loss after 24 hours of autoclave corrosion accelerated curing.The results of the study showed that as for steel in concrete with Natural Inorganic Minerals content of 10%, the corrosion resistance was more excellent than steel in concrete with Natural Inorganic Minerals content of 0%.

Accelerated Carbonation of Concrete Deteriorated by Freezing and Thawing (동결융해 작용을 받은 콘크리트의 촉진중성화 특성)

  • Sohn, Yu-Shin;Kim, Gyu-Yong;Kim, Han-June;Park, Chan-Gyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.221-224
    • /
    • 2004
  • Several factors of concrete durability decline factor are acted as complex deterioration and is happened not that happen by simplicity deterioration. Specially, in case of sea construction, as complex salt damage, carbonation and freezing & thawing, concrete surface and pore structure is deteriorated. Therefore, analyzing concrete carbonation and pore structure after freezing and thawing test by fresh water and sea water in this research, we wish to study about acceleration of decline of durability and complex deterioration by concrete surface deterioration in sea environment.

  • PDF