• Title/Summary/Keyword: carbonation depth of concrete

Search Result 174, Processing Time 0.023 seconds

Carbonation Depths of the Concrete Using Coal Gasification Slag Fine Aggregates Depending on Premix Type Cements (CGS를 잔골재로 활용한 콘크리트의 사전혼합시멘트 종류별 탄산화 특성)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.192-193
    • /
    • 2022
  • In this study, concrete durability was reviewed before CGS, a by-product generated from IGCC, was used as a fine aggregate for concrete. The characteristics of concrete and effect on carbonization according to the type of pre-mixed cement and the CGS substitution rate were analyzed. As a result of the analysis, the depth of carbonation according to the pre-mixed cement types increased by up to 52%, and the carbonation resistance tended to be similar overall when CGS was used as a fine aggregate.

  • PDF

The relation Between Carbonation and Rebar Corrosion of Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 콘크리트의 탄산화 및 철근부식의 관계)

  • 송형수;김형래;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1193-1198
    • /
    • 2001
  • The glass of Ground Granulated Blast Furnace Slag(GGBFS) was released by the hydroxyl ions during the hydration of the Portland cement. That results in relatively less $Ca(OH)_{2}$ in the concrete replaced with GGBFS than in ordinary portland cement concrete(OPCC). As the quantity of $Ca(OH)_{2}$ is decreased, the rate of carbonation in the concrete replaced GGBFS is faster than OPCC. Therefore, it has been misunderstood that the concrete replaced GGBFS has negative effect on the corrosion of steel by carbonation. Therefore, this study aimed at the relation between carbonation and rebar corrsion in the concrete with GGBFS, measuring air.water permeability, half cell, and corrosion rate by the depth of carbonation.

  • PDF

Applicability Study of the Rapid Carbonation Test Equipment for Concrete (콘크리트 급속 촉진 탄산화 장비의 적용성 연구)

  • Choi, Young-Jun;Lee, Kwang-Myong;Kim, Joo-Hyung;Jung, Sang-Hwa;Lee, Myung-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.601-604
    • /
    • 2006
  • Reinforcement corrosion is the most important durability problem of reinforced concrete structures. One of the important factors affecting the steel corrosion is carbonation. However, existing carbonation test takes several months to obtain the results. Therefore, in this study, new rapid carbonation test equipment for concrete was developed and its applicability was investigated. The testing period can be reduced by increasing $CO_2$ concentration up to 100% in the equipment. It is found from the test results that the carbonation depth of concrete specimens tested for 2 weeks was $3{\sim}5$ times greater than that of specimens tested by existing test method. In conclusion, it would be possible to get the reliable test results enough to evaluate the durability of concrete structures in a short-period.

  • PDF

Carbonation Behavior of Lightweight Foamed Concrete Using Coal Fly Ash

  • Lee, Jae Hoon;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.354-361
    • /
    • 2016
  • The purpose of this study was to prepare lightweight foamed concrete by mixing coal fly ash of circulating fluidized bed combustion(CFBC) with cement, and to develop uses for recycling by analyzing carbonation behavior resulting from a change in conditions for pressurized carbonation. For concrete, CFBC coal fly ash was mixed with Portland cement to the water-binder ratio of 0.5, and aging was applied at room temperature after 3 days of curing at $20^{\circ}C$, RH 60%. For carbonation, temperature was fixed at $60^{\circ}C$ and time at 1 h in the use of autoclave. Pressures were controlled to be $5kgf/cm^2$ and the supercritical condition of $80kgf/cm^2$, and gas compositions were employed as $CO_2$ 100% and $CO_2$ 15%+N2 85%. In the characteristics of produced lightweight concrete, the characteristics of lightweight foamed concrete resulting from carbonation reaction were affirmed through rate of weight change, carbonation depth test, air permeability, and processing analysis for the day 28 specimen. Based on these results, it is concluded that the present approach could provide a viable method for mass production of eco-friendly lightweight foamed concrete from CFBC coal fly ash stabilized by carbonation.

A Study on the Evaluation of Carbonation Resistance of Fire Damaged Fiber-Reinforced High Strength Concrete with the Type of Surface Repair Materials (섬유혼입 고강도 콘크리트의 화재 후 표면보수재료의 종류에 따른 중성화 저항성 비교·평가에 관한 연구)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.81-82
    • /
    • 2020
  • In this study, after applying a silicate-based impregnation and polymer-based coating to fire damaged high strength concrete, carbonation resistance was evaluated to compare and evaluate the carbonation depth according to the type of surface repair materials. As a result of the experiment, it was confirmed that the carbonation resistance was increased in the case of the concrete with the surface repair materials compared to the control specimen without the surface repair materials. In particular, in the case of the polymer-based coating agent, it was confirmed that the carbonation hardly progressed.

  • PDF

Carbonation Analysis of Bridge Structures in Urban Area Based on the Results of the Field Test (현장실험결과를 활용한 국내 도심지 교량구조물의 탄산화 해석)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.111-118
    • /
    • 2010
  • Reinforced steel corrosion due to concrete carbonation is one of main factors on the durability of RC structure. The carbonation velocity have an effect on carbon dioxide density, concrete quality and structural shape. Specially, these problems have increased in urban area. This study investigates the carbonation status of the bridges and quantifies the effect of carbonation based on various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. According to experimental results of the carbonation depth, the carbonation depth increased with structural age and carbonation velocity decreased with high strength of concrete. In most cases, the failure probability of durability by carbonation was more than 10%. Also, The results requires the minimum cover thickness of 70-80mm for target safety index(${\beta}$=1.3) proposed by Korean concrete specification.

Carbonation Mitigation of the High Volume Admixture Concrete according to Application Method of Carbonation Resistance Material (탄산화 억제제 사용 따른 혼화재 다량 치환 콘크리트의 탄산화 억제)

  • Jo, Man-Ki;Choi, Young-Doo;Son, Ho-Jung;Woo, Dae-Hun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.271-273
    • /
    • 2012
  • This paper is to investigate the effect of waste cooking oil(WCO) on carbonation resistance of high volume fly ash and blast furnace slag concrete. WCO and paint were applied for carbonation resistance materials. As expected, the application of WCO to the concrete help it reduce carbonation depth remarkably, regardless of mixture types. This may be due to the fact that WCO makes the capillary pore block by activating saponification. It is found that the degree of carbonation reduce due to WCO is much higher than the case by Paint.

  • PDF

Influence of curing condition and carbonation on electrical resistivity of concrete

  • Yoon, In-Seok;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.973-987
    • /
    • 2015
  • The electrical resistivity of air-dried, saturated, and carbonated concretes with different mixture proportions was monitored to evaluate and quantify the influence of the age of the specimen, carbonation, and curing condition. After 28 days of curing, four prepared specimens were stored in a vacuum chamber with 5% $CO_2$ for 330 days to make carbonated specimens. Four of the specimens were placed in water, and four specimens were cured in air until the end of the experiments. It was observed that the electrical resistivity of the carbonated specimens increased as carbonation progressed due to the decrease of porosity and the increase of hydrated products. Therefore, in order to estimate the durability of concrete, its carbonation depth was used as the measurement of electrical resistivity. Moreover, an increase of electrical resistivity for air-dried and saturated concretes was observed as a function of age of the specimen. From the relationship between chloride diffusivity provided by Yoon et al. (2007) and the measurements of electrical resistivity, it is expected that the results well be of significant use in calibrating chloride diffusivity based on regular measurements of electrical resistivity during concrete construction.

Characteristic of Steel Corrosion in Carbonated Concrete

  • You, JeiJun;Ohno, Yoshiteru
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.130-135
    • /
    • 2005
  • In this study, accelerated corrosion tests were conducted on concrete specimens with and without accelerated carbonation beforehand for the purpose of elucidating the effects of carbonation, cover depth, and water-cement ratio (W/C) on the reinforcement corrosion. During testing, the corrosion current between the anode steel and cathode stainless steel was measured to continuously monitor the progress of corrosion throughout the test period, thereby investigating the mechanism of reinforcement corrosion and the relationship between corrosion and crack width, as well as other parameters.