• Title/Summary/Keyword: carbon-FRP sheets

Search Result 55, Processing Time 0.024 seconds

An Experimental Study on Seismic Retrofitting of RC Beam-Column Connections with Carbon FRP (탄소 FRP를 이용한 철근콘크리트 보-기둥 접합부의 내진 성능 보강 실험)

  • Kim Min;Lee Kihak;Lee Jae-Hong;Woo Sung-Woo;Lee Jung-Wean
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.263-266
    • /
    • 2005
  • Many RC structures built without seismic provisions have exhibited brittle shear failures in the beam-column joint area, and resulted in large permanent deformations and structural collapse. This paper presents the results of an experimental investigation pertaining to the use of carbon fiber-reinforced polymer(FRP) for strengthening of RC beam-column connections. The selective upgrade is obtained by choosing different combinations and locations of carbon FRP sheets to determine the effective way to improve the structural performance of joints. Experimental results demonstrate significant improvement of flexural capacity and ductility of beam-column connections originally built without seismic details.

  • PDF

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식)

  • Park, Jai-Woo;Chung, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4024-4030
    • /
    • 2010
  • Axial load tests and cyclic load tests for FRP reinforced rectangular CFT columns were carried out The main parameters were width-thickness ratio of a steel tubeand FRP layer numbers for the axial load tests and were concrete strength and FRP layer numbers for cyclic load tests. The maximum strength and ductility capacity were compared between the current CFT columns and the FRP reinforced CFT columns. Finally, the axial design formulas were presented for the FRP reinforced CFT columns.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Utilizing vacuum bagging process to enhance bond strength between FRP sheets and concrete

  • Abdelal, Nisrin R.;Irshidat, Mohammad R.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • This paper investigates the effect of utilizing vacuum bagging process to enhance the bond behavior between fiber reinforced polymer (FRP) composites and concrete substrate. Sixty specimens were prepared and tested using double-shear bond test. The effect of various parameters such as vacuum, fiber type, and FRP sheet length and width on the bond strength were investigated. The experimental results revealed that utilizing vacuum leads to improve the bond behavior between FRP composites and concrete. Both the ultimate bond forces and the maximum displacements were enhanced when applying the vacuum which leads to reduction in the amount of FRP materials needed to achieve the required bond strength compared with the un-vacuumed specimens. The efficiency of the enhancement in bond behavior due to vacuum highly depends on the fiber type; using carbon fiber showed higher enhancement in the bond strength compared to the glass fiber when vacuum was applied. On the contrary, specimens with glass fiber showed higher enhancement in the maximum slippage compared to specimens with carbon fibers. Utilizing vacuum does not affect the debonding failure modes but lead to increase in the amount of attached concrete on the surface of the debonded FRP sheet.

Flexural Design of Externally Bonded FRP Systems for Strengthening Concrete Structures (섬유판보강공법에서 휨설계식에 대한 연구)

  • 서정국;임종범;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.463-468
    • /
    • 2002
  • For the Externally bonded FRP systems, flexural design method is studied focusing on the reinforcement layer of the carbon fiber sheets. As the FRP layer is added, strengthening rate increases, but not proportionally as the FRP layer increases. This is reflected in the design formula appropriately by the bond cofficients from the added layers. As the number of FRP layer increases, the stress reinforcement and FRP sheet decreases, and it generally corresponds to the decrease rate of member flexural strength. This phenomenon is appearing indentically in a design formula and experimental result. The rate of $M_{test}$ and $M_n$ is 1.19 and it is estimated as safety factor which is the reduction factor, ${\psi}_f = 0.85$.

  • PDF

The Bond Performance of RC Beams Strengrhened for FRP Pannel deal with Fatigue Loadings through Experiments (실험에 의한 피로하중을 받는 FRP패널 보강 RC보의 부착성능)

  • Lee, Chang Gyu;Chung, Yung Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.105-115
    • /
    • 2007
  • Repair and Reinforcement are subjected change to increasing of remodelling. The usage of carbon fiber sheets is increasing for the strengthening of reinforce concrete structures. Therefore experimental and analytical studies are carry out to investigate the flexural behaviors of the strengthened RC structures by the external bonding of the new reinforcement method. Also the aim of this study is to investigate reinforcing method of FRP panel deal with fatigue loading through experiments.

An Experimental Study on Shear Strength of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (섬유보강 철근콘크리트 보의 전단강도에 대한 실험적 연구)

  • Hwang Hyun-Bok;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.371-374
    • /
    • 2005
  • The research reported in this paper provides the test results of eleven reinforced concrete beams strengthened with FRP composites. Three parameters were considered in this investigation: the amount of FRP composites, the types of bonding schemes(continuous sheets or strips), and the material types of FRP composites (Carbon or Glass). The experimental results indicated that because the rupture strain of FRP composites was relatively higher that the yield strain of steel bars, the RC beams strengthened with FRP composites failed due to concrete crushing before the FRP composites arrived at its rupture strain. The compatibility-aided truss model showed reasonable agreement between the predicted and experimental shear stress-strain curves of the beams throughout the entire loading history.

  • PDF

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal

  • Esfandiari, J.;Latifi, M.K.
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.165-172
    • /
    • 2019
  • Progressive collapse is one of the factors which if not predicted at the time of structure plan; its occurrence will lead to catastrophic damages. Through having a glance over important structures chronicles in the world, we will notice that the reason of their collapse is a minor damage in structure caused by an accident like a terrorist attack, smashing a vehicle, fire, gas explosion, construction flaws and its expanding. Progressive collapse includes expanding rudimentary rupture from one part to another which leads to total collapse of a structure or a major part it. This study examines the progressive collapse of a 5-story concrete building with three column eliminating scenarios, including the removal of the corner, side and middle columns with the ABAQUS software. Then the beams and the bottom of the concrete slab were reinforced by (reinforcement of carbon fiber reinforced polymer) FRP and then the structure was re-analyzed. The results of the analysis show that the reinforcement of carbon fiber reinforced polymer sheets is one of the effective ways to rehabilitate and reduce the progressive collapse in concrete structures.