• Title/Summary/Keyword: carbon stable isotope ratio

Search Result 43, Processing Time 0.024 seconds

Discrimination of vegetable oils by stable carbon isotope ratio and fatty acid composition (탄소 안정동위원소 비율 및 지방산 조성을 활용한 식용유지류의 판별)

  • Kim, Jae-Young;Lee, Sang-Mok;Chang, Moon-Ik;Cho, Yoon-Jae;Chae, Young-Sik
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.66-77
    • /
    • 2014
  • This study was carried out to examine the authenticity discrimination of circulated vegetable oils by using carbon isotope ratio (${\delta}^{13}C$) and fatty acid composition. This analysis was applied to vegetable oils which we can buy in Korean markets, and the analytical instrument was measured by using EA-IR/MS for ${\delta}^{13}C$ and GC/FID for fatty acid composition. ${\delta}^{13}C$ was separated into 3 groups as $C_3$ plant including sesame oil, $C_4$ plant including maize oil, and rice bran oil. Fatty acid composition was significantly different among vegetable oils. In addition, the interval of low and high price vegetable oils was classified through the scatter plot analysis showing the correlation of the ${\delta}^{13}C$ and fatty acid composition. Therefore, through a simultaneous determination of the ${\delta}^{13}C$ and fatty acid composition, we are able to determine the majority of vegetable oils. It help to ensure food safety in Korean market by exclusion of economically modified adulteration in food.

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere (표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망)

  • PARK, MI-KYUNG;PARK, SUNYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.32-48
    • /
    • 2018
  • The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.

A Study on Stable Isotope Ratio of Circulated Honey in Korea (국내 유통 벌꿀의 안정동위원소 비율에 관한 연구)

  • Cho, Yoon-Jae;Kim, Jae-Young;Chang, Moon-Ik;Kang, Kyung-Mo;Park, Yong-Chjun;Kang, Il-Hyun;Do, Jung-Ah;Kwon, Ki-Sung;Oh, Jae-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.401-410
    • /
    • 2012
  • This study examines the authenticity discrimination of the circulated honey by using stable isotope ratio methods. In the case of domestic honey, the range of ${\delta}^{13}C$ for the samples labeled as pure honey was about -27- -21‰ at the $C_3$ origin, and the range of that for artificial honey was over -19‰ at the $C_4$ origin. The range of ${\delta}^{13}C$ for all imported honey was over -27- -23‰ originating from the $C_3$ plant. According to the nectar-source, ${\delta}^2H$ and ${\delta}^{18}O$ for domestic honey were significantly different for 6 and 5 groups, respectively. However, we could not explain the detailed relationship as well as the geographical feature of ${\delta}^2H$ and ${\delta}^{18}O$. The difference for ${\delta}^2H$ and ${\delta}^{18}O$ in the wide range of latitude, such as between Australia and Canada, was more or less shown. However, it was difficult to find out the trends of ${\delta}^2H$ and ${\delta}^{18}O$ for imported honey versus the geographical information in the similar latitudinal country.

The Origin of Sediment Organic Matters at Tidal Flat in Estuary (하구갯벌에 있어서 퇴적유기물의 기원 해석)

  • Shin, Woo-Seok;Lee, Yong-Doo;Fujibayashi, Megumu;Nagahama, Yumi;Nomura, Munehiro;Nishimura, Osamu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The purpose of this study is to clarify the origin of organic matters on sediment and the characteristics of seasonal variation at an estuarine tidal flat. Silt-clay content (<63 ${\mu}m$), chlorophyll a, TOC, C/N ratio and the stable isotope ratio of carbon and nitrogen were measured at tidal flat around the estuary of the Nanakita River. As a result, organic matters originating from marine organic matter and bethic microalgae greatly contributed to sedimentation of organic matters at Stn.A, sandy tidal flat, though terrigenous organic matters did at Stn.C, muddy tidal flat. Furthermore, it was revealed that the volume and origin of organic matters in the sediments depended on seasonal variation, and the factors were different from the Stns, i.e. bentic microalgae and event for Stn.A, and the eventual sedimentation of organic matters originating from terrestrial plants, respectively.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

Comparison of Morphological Characters and Stable Isotopes of Seeds between Wild Simulated Ginseng and Cultivated Field Ginseng (국내 산양삼과 인삼 종자의 형태적 형질과 안정성 동위원소 비교)

  • Choi, Myoung Sub;Kim, Sunhee;Park, Chan Ryul;Kim, Namyoung;Shin, Jinsub
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.357-362
    • /
    • 2008
  • We compared the morphological characters and stable isotopes of seeds of wild simulated ginseng with those of cultivated field ginseng. Seeds were collected from ten areas for wild simulated ginseng and two areas for cultivated field ginseng. The length, width, thickness and number of seeds per gram were measured and the ratio of stable isotopes of carbon and nitrogen was analysed as well. There was a overlapping variation of morphological characters and the ratio of stable isotope of the wild simulated ginseng among study areas. In Geumsan area, compared with the seed of cultivated field ginseng, the seed of wild simulated ginseng was significantly small and light, and the ${\delta}^{15}N$(‰) of wild simulated ginseng was lower than that of cultivated field ginseng. However, it is somewhat impossible to compare the regional variation of the unique value of ${\delta}^{15}N$(‰) among study areas of wild simulated ginseng. We can suggest the value of ${\delta}^{15}N$(‰) can be used as detection factor for cultivation regime like chemical fertilization and organic farming.

Detection of the Adulterated Sesame Oil by the Analysis of Fatty Acid Compositions and Carbon Isotope Ratio (지방산조성과 탄소동위원소 분석에 의한 참기름에 혼입된 타식용유의 검출방법)

  • Ha, Jae-Ho;Hawer, Woo-Derck;Hwang, Jin-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.345-350
    • /
    • 1993
  • Fatty acid composition of sesame oil could be distinguished from that of rapeseed oil and soybean oil by the content of linolenic acid. The relative composition of each fatty acid revealed the clear difference between sesame oil and other vegetable oils except corn oil. Ricebran oil was different from sesame oil in the relative composition of palmitic acid with respect to stearic acid and cottonseed oil in oleic acid to linoleic acid. ${\delta}^{13}C$ of corn oil was $19.40%_{\circ}$, in oleic acid and $-17.11%_{\circ}$, in linoleic acid, while that of sesame oil was $-27.60%_{\circ}$ in oleic acid and $-27.70%_{\circ}$ in linoleic acid. Therefore, most adulterant could be detected by comparing the ratio of fatty acids in vegetable oils except corn oil. It could, however, be detected by comparing carbon isotope ratio in the case of corn oil.

  • PDF

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere (생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용)

  • Han, Gwang-Hyun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2010
  • In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.