• 제목/요약/키워드: carbon nanotubes(CNT)

Search Result 547, Processing Time 0.022 seconds

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II) (Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.854-860
    • /
    • 2017
  • PSf/D2EHPA/CNTs beads were prepared by immobilizing extractant di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and adsorbent carbon nanotubes (CNTs) on polysulfone (PSf), and the adsorption characteristics of Sr(II) on the beads were studied. The morphological characteristics of the prepared PSf/D2EHPA/CNTs beads were observed by scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectrometer (FTIR). The equilibrium time for the removal of Sr(II) by PSf/D2EHPA/CNTs beads was 60 min. The experimental kinetic data followed pseudo-second-order model more than pseudo-first-order kinetics model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was 4.75 mg/g. The removal efficiencies of Sr (II) by PSf/D2EHPA/CNTs beads were improved 2.5 times by adding the adsorbent CNTs more than by using only the extractant D2EHPA.

Tribological Characteristics of Carbon Nanotube Aluminum Composites According to Fabrication Method and Content of Carbon Nanotube (알루미늄탄소나노튜브 복합재의 가공 방법과 탄소나노튜브 함량에 따른 트라이볼로지 특성)

  • Lee, Young-Ze;Lee, Jung-Hee;Kim, Il-Young;Lee, Gyu-Sun;Baik, Seung-Hyun;Youn, Jeong-Il;Kim, Young-Jig
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.269-274
    • /
    • 2008
  • Carbon nanotube composite is considered to be a good candidate material for composite material because of its excellent mechanical property and low density under high temperature as well as good wear and frictional properties. In this study, tribological characteristics of carbon nanotube aluminum composite were evaluated using pin-on-disk wear tester. Spark Plasma Sintering method is more effective than Hot Pressing method in terms of wear and friction. The composite with 1% CNT has the lowest friction and wear characteristic.

CNT Emitter Coated with Nanoparticles for FED Application

  • Kim, Jong-Ung;Lee, Jung-A;Ryu, Byong-Hwan;Kim, In-Ho;Moon, Hee-Sung;Kim, Jae-Myeong;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1198-1201
    • /
    • 2006
  • Carbon nanotubes (CNTs) have used as an electron field emitter of the field emission display (FED) due to their characteristics of high-electron emission, rapid response and low power consumption. However, to commercialize the FED with CNT emitter, some fundamental problems regarding life time and emission efficiency have to be solved. In this study, we investigated the metal coated CNT as a field emitter on which metal nanoparticles were coated by chemical modification. Metal nanoparticles, such as Ru, Pd, were synthesized by solution reduction method. The size of the metal nanoparticle has the range of 2 - 5 nm. Surface was modified chemically with the use of ionic surfactant which changed the surface charge of nanoparticles.

  • PDF

A Study of Gigahertz Nanotube Actuator using Molecular Dynamic Simulation (기가헤르쯔급 탄소 나노튜브 진동자의 분자동역학 시뮬레이션)

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • This paper shows a gigahertz actuator based on multi-wall carbon nanotubes(CNT) encapsulating metallic ions using classical molecular dynamics simulations. Encapsulated potassium ions accelerated by an applying external electric field could initialize a gigahertz actuator composed of a $7K^{+}(a)CNT$ oscillator.

  • PDF

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties (DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성)

  • Kim, Kwang-Sik;Ryu, Ho-Jin;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review

  • Khan, Shafi Ullah;Kim, Jang-Kyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.115-133
    • /
    • 2011
  • Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.