Browse > Article
http://dx.doi.org/10.5139/IJASS.2011.12.2.115

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review  

Khan, Shafi Ullah (Department of Mechanical Engineering, Hong Kong University of Science and Technology Clear Water Bay Kowloon)
Kim, Jang-Kyo (Department of Mechanical Engineering, Hong Kong University of Science and Technology Clear Water Bay Kowloon)
Publication Information
International Journal of Aeronautical and Space Sciences / v.12, no.2, 2011 , pp. 115-133 More about this Journal
Abstract
Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.
Keywords
Carbon nanotubes; Carbon nanofibers; Fiber reinforced composites; Interlaminar properties;
Citations & Related Records

Times Cited By SCOPUS : 4
연도 인용수 순위
  • Reference
1 Ganguli, S., Bhuyan, M., Allie, L., and Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40, 3593-3595.   DOI
2 Garcia, E. J., Wardle, B. L., and John Hart, A. (2008a). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 1065-1070.   DOI   ScienceOn
3 Garcia, E. J., Wardle, B. L., John Hart, A., and Yamamoto, N. (2008b). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68, 2034-2041.   DOI   ScienceOn
4 Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V., van Vuure, A. W., Gorbatikh, L., Moldenaers, P., and Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/ epoxy composites. Carbon, 47, 2914-2923.   DOI   ScienceOn
5 Chandrasekaran, V. C. S., Advani, S. G., and Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon, 48, 3692-3699.   DOI   ScienceOn
6 Chang, P., Mouritz, A. P., and Cox, B. N. (2007). Flexural properties of z-pinned laminates. Composites Part A: Applied Science and Manufacturing, 38, 244-251.   DOI   ScienceOn
7 Choi, J. S., Lim, S. T., Choi, H. J., Hong, S. M., Mohanty, A. K., Drzal, L. T., Misra, M., and Wibowo, A. C. (2005). Rheological, thermal, and morphological characteristics of plasticized cellulose acetate composite with natural fibers. Macromolecular Symposia, 224, 297-307.   DOI   ScienceOn
8 Davis, D. C. and Whelan, B. D. (2011). An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering, 42, 105-116.   DOI   ScienceOn
9 Dickinson, L. C., Farley, G. L., and Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites. Journal of Composite Materials, 33, 1002-1029.   DOI
10 Donnet, J. B., Wang, T. K., Peng, J. C. M., and Rebouillat, S. (1998). Carbon Fibers. 3rd ed. New York: Marcel Dekker.
11 Downs, W. B. and Baker, R. T. K. (1995). Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. Journal of Materials Research, 10, 625-633.   DOI
12 Dransfield, K., Baillie, C., and Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology, 50, 305-317.   DOI   ScienceOn
13 Dransfield, K. A., Jain, L. K., and Mai, Y. W. (1998). On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology, 58, 815-827.   DOI   ScienceOn
14 Barbezat, M., Brunner, A. J., Necola, A., Rees, M., Gasser, P., and Terrasi, G. (2009). Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. Journal of Composite Materials, 43, 959-976.   DOI
15 Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E., and Haddon, R. C. (2007). Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir, 23, 3970-3974.   DOI   ScienceOn
16 Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607.   DOI   ScienceOn
17 Bhuiyan, M. A., Hosur, M. V., and Jeelani, S. (2009). Lowvelocity impact response of sandwich composites with nanophased foam core and biaxial (${\times}45^{\circ}C$) braided face sheets. Composites Part B: Engineering, 40, 561-571.   DOI   ScienceOn
18 Brown, R. T. and Crow, E. C., Jr. (1992). Automatic throughthe- thickness braiding. The 37th International SAMPE Symposium and Exhibition, Anaheim, CA. pp. 832-842.
19 Bibo, G. A. and Hogg, P. J. (1996). The role of reinforcement architecture on impact damage mechanisms and postimpact compression behaviour. Journal of Materials Science, 31, 1115-1137.   DOI
20 Blanco, J., Garcia, E. J., Guzman De Villoria, R., and Wardle, B. L. (2009). Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials, 43, 825-841.   DOI
21 Cantwell, W. J. and Morton, J. (1991). The impact resistance of composite materials-a review. Composites, 22, 347-362.   DOI   ScienceOn
22 Cesano, F., Bertarione, S., Scarano, D., and Zecchina, A. (2005). Connecting carbon fibers by means of catalytically grown nanofilaments: formation of carbon-carbon composites. Chemistry of Materials, 17, 5119-5123.   DOI   ScienceOn
23 Abe, T., Hayashi, K., Sato, T., Yamane, S., and Hirokawa, T. (2003). A-VARTM process and z-anchor technology for primary aircraft structures. Proceedings of the 24th SAMPE Europe International Conference, Paris, France.
24 Arai, M., Noro, Y., Sugimoto, K. i., and Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68, 516-525.   DOI   ScienceOn
25 Abot, J. L., Song, Y., Schulz, M. J., and Shanov, V. N.(2008). Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Composites Science and Technology, 68, 2755- 2760.   DOI   ScienceOn
26 Abrate, S. (1991). Impact on laminated composite materials. Applied Mechanics Reviews, 44, 155-190.   DOI
27 Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265, 1212- 1214.   DOI   ScienceOn
28 Avila, A. F., Soares, M. I., and Silva Neto, A. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings. International Journal of Impact Engineering, 34, 28-41.   DOI   ScienceOn
29 Yokozeki, T., Iwahori, Y., Ishiwata, S., and Enomoto, K. (2007). Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNTdispersed epoxy. Composites Part A: Applied Science and Manufacturing, 38, 2121-2130.   DOI   ScienceOn
30 Yamamoto, N., John Hart, A., Garcia, E. J., Wicks, S. S., Duong, H. M., Slocum, A. H., and Wardle, B. L. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47, 551- 560.   DOI   ScienceOn
31 Zhang, X., Cao, A., Li, Y., Xu, C., Liang, J., Wu, D., and Wei, B. (2002). Self-organized arrays of carbon nanotube ropes. Chemical Physics Letters, 351, 183-188.   DOI   ScienceOn
32 Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V. N., and Barrera, E. V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 67, 1509-1517.   DOI   ScienceOn
33 Zhu, S., Su, C. H., Lehoczky, S. L., Muntele, I., and Ila, D. (2003). Carbon nanotube growth on carbon fibers. Diamond and Related Materials, 12, 1825-1828.   DOI   ScienceOn
34 Wang, S. J., Geng, Y., Zheng, Q., and Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815-1823.   DOI   ScienceOn
35 Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T., and Friedrich, K. (2007). On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Composites Part A: Applied Science and Manufacturing, 38, 1159-1162.   DOI   ScienceOn
36 Tugrul Seyhan, A., Tanoglu, M., and Schulte, K. (2008). Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics, 75, 5151-5162.   DOI   ScienceOn
37 Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M., and Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5, 457-462.   DOI   ScienceOn
38 Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., Lomov, S. V., VanVuure, A. W., and Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41, 532-538.   DOI   ScienceOn
39 Wichmann, M. H. G., Sumfleth, J., Gojny, F. H., Quaresimin, M., Fiedler, B., and Schulte, K. (2006). Glass-fibre-reinforced composites with enhanced mechanical and electrical properties - Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 73, 2346- 2359.   DOI   ScienceOn
40 Wicks, S. S., de Villoria, R. G., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 70, 20-28.   DOI   ScienceOn
41 Steeves, C. A. and Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197-3212.   DOI   ScienceOn
42 Woldesenbet, E. (2008). Low velocity impact properties of nanoparticulate syntactic foams. Materials Science and Engineering A, 496, 217-222.   DOI   ScienceOn
43 Singh, S. and Partridge, I. K. (1995). Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite. Composites Science and Technology, 55, 319-327.   DOI   ScienceOn
44 Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science (Oxford), 35, 357-401.   DOI   ScienceOn
45 Sun, L., Warren, G. L., and Sue, H. J. (2010). Partially cured epoxy/SWCNT thin films for the reinforcement of vacuumassisted resin-transfer-molded composites. Carbon, 48, 2364-2367.   DOI   ScienceOn
46 Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., and Chou, T. W. (2002). Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics, 91, 6034- 6037.   DOI   ScienceOn
47 Thostenson, E. T., Ren, Z., and Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, 1899-1912.   DOI   ScienceOn
48 Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports, 53, 73-197.   DOI   ScienceOn
49 Tong, L., Mouritz, A. P., and Bannister, M. K. (2002). 3D Fibre Reinforced Polymer Composites. Boston: Elsevier. pp. 1-12.
50 Tong, L., Sun, X., and Tan, P. (2008). Effect of long multiwalled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials, 42, 5-23.   DOI
51 Qiu, J., Zhang, C., Wang, B., and Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 18, 275708.   DOI   ScienceOn
52 Rao, C. N. R., Deepak, F. L., Gundiah, G., and Govindaraj, A. (2003). Inorganic nanowires. Progress in Solid State Chemistry, 31, 5-147.   DOI   ScienceOn
53 Reeder, J. R. (1995). Stitching vs. a toughened matrix: compression strength effects. Journal of Composite Materials, 29, 2464-2487.   DOI
54 Rojas-Chapana, J. A. and Giersig, M. (2006). Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. Journal of Nanoscience and Nanotechnology, 6, 316-321.   DOI
55 Romhany, G. and Szebenyi, G. (2009). Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polymer Letters, 3, 145-151.   DOI
56 Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K. T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37, 1787-1795.   DOI   ScienceOn
57 Sager, R. J., Klein, P. J., Lagoudas, D. C., Zhang, Q., Liu, J., Dai, L., and Baur, J. W. (2009). Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology, 69, 898-904.   DOI   ScienceOn
58 Siddiqui, N. A., Khan, S. U., Li, C. Y., Ma, P. C., and Kim, J. K. (2011). Manufacturing and characterization of CFRP prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing In press.
59 Ma, P. C., Wang, S. Q., Kim, J. K., and Tang, B. Z. (2009). In-situ amino functionalization of carbon nanotubes using ball milling. Journal of Nanoscience and Nanotechnology, 9, 749-753.   DOI   ScienceOn
60 Siddiqui, N. A., Woo, R. S. C., Kim, J. K., Leung, C. C. K., and Munir, A. (2007). Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 38, 449-460.   DOI   ScienceOn
61 Meguid, S. A. and Sun, Y. (2004). On the tensile and shear strength of nano-reinforced composite interfaces. Materials and Design, 25, 289-296.   DOI   ScienceOn
62 Mohanty, A. K., Wibowo, A., Misra, M., and Drzal, L. T. (2003). Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polymer Engineering and Science, 43, 1151-1161.   DOI   ScienceOn
63 Moniruzzaman, M., Du, F., Romero, N., and Winey, K. I. (2006). Increased flexural modulus and strength in SWNT/ epoxy composites by a new fabrication method. Polymer, 47, 293-298.   DOI   ScienceOn
64 Mouritz, A. P. (2007). Review of z-pinned composite laminates. Composites Part A: Applied Science and Manufacturing, 38, 2383-2397.   DOI   ScienceOn
65 Mouritz, A. P., Bannister, M. K., Falzon, P. J., and Leong, K. H. (1999). Review of applications for advanced threedimensional fibre textile composites. Composites Part A: Applied Science and Manufacturing, 30, 1445-1461.   DOI   ScienceOn
66 Mylavarapu, P. and Woldesenbet, E. (2010). Effect of nanoclay incorporation on the impact properties of adhesively bonded composite structures. Journal of Adhesion Science and Technology, 24, 389-405.   DOI   ScienceOn
67 Kim, J. K. and Sham, M. L. (2000). Impact and delamination failure of woven-fabric composites. Composites Science and Technology, 60, 745-761.   DOI   ScienceOn
68 Nussbaumer, R. J., Caseri, W. R., and Smith, P. (2006). Reversible photochromic properties of TiO2-polymer nanocomposites. Journal of Nanoscience and Nanotechnology, 6, 459-463.   DOI
69 Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., and Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20, 1862- 1869.   DOI   ScienceOn
70 Kim, J. K. and Mai, Y. W. (1998). Engineered Interfaces in Fiber Reinforced Composites. 1st ed. New York: Elsevier Sciences.
71 Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A. (2010). Impact and afterimpact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Composites Science and Technology, 70, 553-563.   DOI   ScienceOn
72 Li, J. and Kim, J. K. (2007). Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 67, 2114-2120.   DOI   ScienceOn
73 Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., and Fukunaga, H. (2009). Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A: Applied Science and Manufacturing, 40, 2004-2012.   DOI   ScienceOn
74 Liao, F. S., Su, A. C., and Hsu, T. C. J. (1994). Vibration damping of interleaved carbon fiber-epoxy composite beams. Journal of Composite Materials, 28, 1840-1854.   DOI   ScienceOn
75 Ma, P. C. and Kim, J. K. (2011). Carbon Nanotubes for Polymer Reinforcement. Boca Raton, FL: Taylor & Francis.
76 Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., and Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 46, 2026-2033.   DOI   ScienceOn
77 Ma, P. C., Kim, J. K., and Tang, B. Z. (2007). Effects of silane functionalization on the properties of carbon nanotube/ epoxy nanocomposites. Composites Science and Technology, 67, 2965-2972.   DOI   ScienceOn
78 Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41, 1345-1367.   DOI   ScienceOn
79 Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., and Paipetis, A. (2009). Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials, 43, 977- 985.   DOI
80 Khan, S. U., Iqbal, K., Munir, A., and Kim, J. K. (2011a). Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42, 253-264.   DOI   ScienceOn
81 Khan, S. U. and Kim, J. K. (2011). Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves. The 18th International Conference on Composite Materials, Jeju, Korea.
82 Khan, S. U., Li, C. Y., Siddiqui, N. A., and Kim, J. K. (2011b). Vibration damping characteristics of carbon fiber-reinforced composite containing multi-walled carbon nanotubes. Composites Science and Technology In press.
83 Khan, S. U., Munir, A., Hussain, R., and Kim, J. K. (2010). Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Composites Science and Technology, 70, 2077-2085.   DOI   ScienceOn
84 Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S., and Murakami, A. (2006b). Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Composites Science and Technology, 66, 665-675.   DOI   ScienceOn
85 Kim, J. K., Baillie, C., Poh, J., and Mai, Y. W. (1992). Fracture toughness of CFRP with modified epoxy resin matrices. Composites Science and Technology, 43, 283-297.   DOI   ScienceOn
86 Kim, J. K. (1998). Methods for improving impact damage resistance of CFRPs. Key Engineering Materials, 141-143, 149-168.   DOI
87 Kim, J. K., MacKay, D. B., and Mai, Y. W. (1993). Dropweight impact damage tolerance of CFRP with rubbermodified epoxy matrix. Composites, 24, 485-494.   DOI   ScienceOn
88 Hosur, M. V., Mohammed, A. A., Zainuddin, S., and Jeelani, S. (2008). Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Composite Structures, 82, 101-116.   DOI   ScienceOn
89 Hsiao, K. T., Alms, J., and Advani, S. G. (2003). Use of epoxy/ multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology, 14, 791-793.   DOI   ScienceOn
90 Hung, K. H., Tzeng, S. S., Kuo, W. S., Wei, B., and Ko, T. H. (2008). Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology, 19, 295602.   DOI   ScienceOn
91 Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58.   DOI
92 Inam, F., Wong, D. W. Y., Kuwata, M., and Peijs, T. (2010). Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. Journal of Nanomaterials, 2010, 453420.
93 Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., and Schulte, K. (2005a). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36, 1525-1535.   DOI   ScienceOn
94 Iqbal, K., Khan, S. U., Munir, A., and Kim, J. K. (2009). Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology, 69, 1949- 1957.   DOI   ScienceOn
95 Isayev, A. I., Kumar, R., and Lewis, T. M. (2009). Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer, 50, 250-260.   DOI   ScienceOn
96 Joshi, M. and Butola, B. S. (2004). Polymeric nanocomposites-polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science-Polymer Reviews, 44, 389-410.   DOI   ScienceOn
97 Gojny, F. H., Wichmann, M. H. G., Fiedler, B., and Schulte, K. (2005b). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Science and Technology, 65, 2300-2313.   DOI   ScienceOn
98 Green, K. J., Dean, D. R., Vaidya, U. K., and Nyairo, E. (2009). Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 40, 1470-1475.   DOI   ScienceOn
99 Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z., and Kiricsi, I. (2006). Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Composites Part A: Applied Science and Manufacturing, 37, 1252-1259.   DOI   ScienceOn
100 Hirai, Y., Hamada, H., and Kim, J. K. (1998a). Impact response of woven glass-fabric composites - I. Effect of fibre surface treatment. Composites Science and Technology, 58, 91-104.   DOI   ScienceOn
101 Hirai, Y., Hamada, H., and Kim, J. K. (1998b). Impact response of woven glass-fabric composites - II. Effect of temperature. Composites Science and Technology, 58, 119- 128.   DOI   ScienceOn
102 Hiroi, R., Ray, S. S., Okamoto, M., and Shiroi, T. (2004). Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromolecular Rapid Communications, 25, 1359-1364.   DOI   ScienceOn
103 Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S., and Endo, Y. (2006a). Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 28, 1154-1165.   DOI   ScienceOn
104 Du, J. H., Bai, J., and Cheng, H. M. (2007). The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters, 1, 253-273.   DOI
105 Fan, Z. and Advani, S. G. (2005). Characterization of orientation state of carbon nanotubes in shear flow. Polymer, 46, 5232-5240.   DOI   ScienceOn
106 Fan, Z., Santare, M. H., and Advani, S. G. (2008). Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 540-554.   DOI   ScienceOn
107 Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., and Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115-3125.   DOI   ScienceOn