DOI QR코드

DOI QR Code

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Received : 2021.09.19
  • Accepted : 2023.07.27
  • Published : 2023.10.25

Abstract

This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Keywords

References

  1. Antunes, R.A., De Oliveira, M.C., Ett, G. and Ett, V. (2011), "Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance", J. Power Sources, 196(6), 2945-2961. https://doi.org/10.1016/j.jpowsour.2010.12.041
  2. Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/10.12989/anr.2021.10.4.327
  3. Barton, R., King, J. and Keith, J. (2006), "Development and modelling of electrically conductive carbon filled liquid crystal polymer composites for fuel cell bipolar plate applications", Proceedings of the Conference: The 6. International Symposium on New Materials for Electrochemical Systems, Montreal, Canada, July.
  4. Bourell, D., Leu, M.C., Chakravarthy, K., Guo, N. and Alayavalli, K. (2011), "Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions", CIRP Annals, 60(1), 275-278. https://doi.org/10.1016/j.cirp.2011.03.105
  5. Chen, S., Bourell, D.L. and Wood, K.L. (2004). "Fabrication of PEM fuel cell bipolar plates by indirect SLS", Proceedings of the 2004 International Solid Freeform Fabrication Symposium. http://doi.org/10.26153/tsw/6990
  6. Du, L. and Jana, S.C. (2008), "Hygrothermal effects on properties of highly conductive epoxy/graphite composites for applications as bipolar plates", J. Power Sources, 182(1), 223-229. https://doi.org/10.1016/j.jpowsour.2008.03.071
  7. Dweiri, R. and Sahari, J. (2007), "Computer simulation of electrical conductivity of graphite-based polypropylene composites based on digital image analysis", J. Mater. Sci., 42(24), 10098-10102. https://doi.org/10.1007/s10853-007-2092-x
  8. Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559
  9. Gholami, H., Shakeri, A. and Moosavi, S.H. (2015), "Preparation and properties investigation of conductive Polyaniline-Zinc Oxide nanocomposites", J. Sci. Technol. Compos, 2, 7-12.
  10. Gu, H., Zhang, H., Ma, C., Xu, X., Wang, Y., Wang, Z., Wei, R., Liu, H., Liu, C. and Shao, Q. (2019), "Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy", Carbon, 142, 131-140. https://doi.org/10.1016/j.carbon.2018.10.029
  11. Guo, J., Chen, Z., Xu, X., Li, X., Liu, H., Xi, S., Abdul, W., Wu, Q., Zhang, P. and Xu, B.B. (2022), "Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers", Adv. Compos. Hybrid Mater., 1-9. https://doi.org/10.1007/s42114-022-00417-2
  12. Guo, N. and Leu, M.C. (2012), "Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering", Int. J. Hydrogen Energy, 37(4), 3558-3566. https://doi.org/10.1016/j.ijhydene.2011.11.058
  13. Hosseini, M. and Zandi Baghche Maryam, A. (2016), "Electromechanical response analysis of a rotating piezoelectric cylinder with functionally graded material under thermomagnetic fields", J. Sci. Technol. Compos., 3(1), 59-72.
  14. ASTM (American Society for Testing and Materials) (2015), ASTM D3171-15-Standard Test Methods for Constituent Content of Composite Materials, ASTM International West Conshohocken, Filadelfia, Pennsylvania, U.S.A.
  15. Jin, J., Lin, Y., Song, M., Gui, C. and Leesirisan, S. (2013), "Enhancing the electrical conductivity of polymer composites", Eur. Polym. J., 49(5), 1066-1072. https://doi.org/10.1016/j.eurpolymj.2013.01.014
  16. Johnson, B.A. (2009), "Thermally and electrically conductive polypropylene based resins for fuel cell bipolar plates", Doctoral dissertation, Michigan Technological University
  17. Kakati, B., Sathiyamoorthy, D. and Verma, A. (2010), "Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell", Int. J. Hydrogen Energy, 35(9), 4185-4194. https://doi.org/10.1016/j.ijhydene.2010.02.033
  18. Karimi, M., Ghajar, R. and Montazeri, A. (2017), "Investigation of nanotubes' length and their agglomeration effects on the elastoplastic behavior of polymer-based nanocomposites", J. Sci. Technol. Compos., 4(2), 229-240.
  19. Kim, Y.J., Shin, T.S., Do Choi, H., Kwon, J.H., Chung, Y.-C. and Yoon, H.G. (2005), "Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites", Carbon, 43(1), 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
  20. Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., 5(3), 215. http://doi.org/10.12989/anr.2017.5.3.215
  21. Liao, S.H., Hsiao, M.C., Yen, C.Y., Ma, C.C.M., Lee, S.J., Su, A., Tsai, M.C., Yen, M.Y. and Liu, P.L. (2010), "Novel functionalized carbon nanotubes as cross-links reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells", J. Power Sources, 195(23), 7808-7817. https://doi.org/10.1016/j.jpowsour.2009.10.020
  22. Liao, S.H., Hung, C.H., Ma, C.C.M., Yen, C.Y., Lin, Y.-F. and Weng, C.C. (2008), "Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells", J. Power Sources, 176(1), 175-182. https://doi.org/10.1016/j.jpowsour.2007.10.064
  23. Luo, X., Yang, G. and Schubert, D.W. (2022), "Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy", Adv. Compos. Hybrid Mater., 5(1), 250-262. https://doi.org/10.1007/s42114-021-00332-y
  24. Mighri, F., Huneault, M.A. and Champagne, M.F. (2004), "Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application", Polym. Eng. Sci., 44(9), 1755-1765. https://doi.org/10.1002/pen.20177
  25. Modarresi-Alam, A.R., Soleimani, M., Pakseresht, M., FarzanehJobaneh, E., Zeraatkar, V., Tabatabaei, F.A., Shabzendedar, S. and Movahedifar, F. (2016), "Preparation of new conductive nanocomposites of polyaniline and silica under solid-state condition", Polym. Int, 29, 387-398.
  26. Osman, A., Elhakeem, A., Kaytbay, S. and Ahmed, A. (2022), "A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites", Adv. Compos. Hybrid Mater., 1-59. https://doi.org/10.1007/s42114-022-00423-4
  27. Pan, Y.X., Yu, Z.Z., Ou, Y.C. and Hu, G.H. (2000), "A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization", J. Polym. Sci. Part B Polym. Phys., 38(12), 1626-1633. https://doi.org/10.1002/(SICI)10990488(20000615)38:12<1626::AID-POLB80>3.0.CO,2-R
  28. Park, S.M., Jung, D.H., Kim, S.K., Lim, S., Peck, D. and Hong, W.H. (2009), "The effect of vapor-grown carbon fiber as an additive to the catalyst layer on the performance of a direct methanol fuel cell", Electrochimica Acta, 54(11), 3066-3072. https://doi.org/10.1016/j.electacta.2008.11.066
  29. Razavi, M., Ghomi, M.T., Taheri-Behrooz, F. and Liaghat, G. (2019), "Effect of bending load on the electrical conductivity of carbon/epoxy composites filled with nanoparticles", Iran. J. Polym. Sci. Technol., 32, 79-92.
  30. Razavi, S.M., Sadollah, A. and Al-Shamiri, A.K. (2022), "Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks", Neural Comput. Appl., 34(10), 7653-7671. https://doi.org/10.1007/s00521-021-06798-7
  31. Rhodes, S.M., Higgins, B., Xu, Y. and Brittain, W.J. (2007), "Hyperbranched polyol/carbon nanofiber composites", Polymer, 48(6), 1500-1509. https://doi.org/10.1016/j.polymer.2007.01.038
  32. Shen, C.H., Mu, P. and Yuan, R.Z. (2006), "Sodium silicate/graphite conductive composite bipolar plates for proton exchange membrane fuel cells", J. Power Sourc., 162(1), 460-463. https://doi.org/10.1016/j.jpowsour.2006.06.095
  33. Shokrieh, M.M., Esmkhani, M., Vahedi, F. and Shahverdi, H.R. (2013), "Improvement of mechanical and electrical properties of epoxy resin with carbon nanofibers", Iran. Polym. J., 22(10), 721-727. https://doi.org/10.1007/s13726-013-0170-2
  34. Sun, L., Cui, R., Jalbout, A., Li, M., Pan, X., Wang, R. and Xie, H. (2009), "LiFePO4 as an optimum power cell material", J. Power Sources, 189(1), 522-526. https://doi.org/10.1016/j.jpowsour.2008.10.120
  35. Tabatabaee, M., Taheri-Behrooz, F., Razavi, S.M. and Liaghat, G.H. (2019), "Electrical conductivity enhancement of Carbon/Epoxy composites using nanoparticles", J. Sci. Technol. Compos., 5(4), 605-614.
  36. Taherian, R., Golikand, A.N. and Hadianfard, M.J. (2011), "The effect of mold pressing pressure and composition on properties of nanocomposite bipolar plate for proton exchange membrane fuel cell", Mater. Des., 32(7), 3883-3892. https://doi.org/10.1016/j.matdes.2011.02.059
  37. Taherian, R., Hadianfard, M.J. and Golikand, A.N. (2013), "Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells", Mater. Des., 49, 242-251. https://doi.org/10.1016/j.matdes.2013.01.058
  38. Testing, A.S.F. and Materials (2015), "Standard test method for flexural properties of polymer matrix composite materials", ASTM D7264.
  39. Wafers, S. (2003), "Sheet resistance of thin metallic films with a collinear four-probe array 1", Measurement, 98, 1-4.
  40. Wang, Y. (2006), Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC), Master's thesis, University of Waterloo, Waterloo, Canada.
  41. Xu, X., Yao, F., Ali, O.A.A., Xie, W., Mahmoud, S.F., Xie, P., ElBahy, S.M., Huang, M., Liu, C. and Fan, R. (2022), "Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding", Adv. Compos. Hybrid Mater., 5(3), 2002-2011. https://doi.org/10.1007/s42114-022-00538-8
  42. Yogeswaran, U. and Chen, S.M. (2008), "Multi-walled carbon nanotubes with poly (methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid", Sensors Actuat. B Chem., 130(2), 739-749. https://doi.org/10.1016/j.snb.2007.10.040