• Title/Summary/Keyword: carbon nanotube reinforced composite

Search Result 180, Processing Time 0.025 seconds

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

Studies on Morphologies and Mechanical Properties of Multi-walled Carbon Nanotubes/Epoxy Matrix Composites

  • Seo, Min-Kang;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1237-1240
    • /
    • 2010
  • The mechanical properties of multiwalled carbon nanotubes (MWNTs)-reinforced epoxy matrix composites with different weight percentages of MWNTs have been investigated. Also, the morphologies and failure behaviors of the composites after mechanical tests are studied by SEM and TEM analyses. As a result, the addition of MWNTs into the epoxy matrix has a remarkable effect on the mechanical properties. And the fracture surfaces of MWNTs/epoxy composites after flexural strength tests show different failure mechanisms for the composites under different nanotube contents. Also, a chemical functionalization of MWNTs can be a useful tool to improve the dispersion of the nanotubes in an epoxy system, resulting in increasing the mechanical properties of the composite materials studied.

Bending behavior of SWCNT reinforced composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2017
  • In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.

A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.691-699
    • /
    • 2022
  • This paper is devoted to the presentation of a numerical study on vibration behavior of composite panels reinforced by glass fibres and carbon nanotubes (CNTs) subjected to thermal environments. The effect of temperature variation has been included as thermal load acting on in-plane direction of the panel. To model the composite material, a micromechanical model which contains random dispersion of nanotubes and single-direction fibers has been selected. The geometry of the panel has been considered to have a single curveture along its width. Based on the above assumptions, the governing equations have been derived by using thin shell theory capturing the panel curveture and also nonlinear deflections. Finally, the panel dependence on various factors such as the curveture, nanotube amount, fiber volume, fiber direction and temperature variation has been researched.

The critical buckling load of reinforced nanocomposite porous plates

  • Guessas, Habib;Zidour, Mohamed;Meradjah, Mustapha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • By using the first order shear deformation plate theory (FSDT) in the present paper, the effect of porosity on the buckling behavior of carbon nanotube-reinforced composite porous plates has been investigated analytically. Two types of distributions of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and functionally graded (FG-CNT) of plates. The analytical equations of the model are derived and the exact solutions for critical buckling load of such type's plates are obtained. The convergence of the method is demonstrated and the present solutions are numerically validated by comparison with some available solutions in the literature. The central thesis studied and discussed in this paper is the Influence of Various parameters on the buckling of carbon nanotube-reinforced porous plate such as aspect ratios, volume fraction, types of reinforcement, the degree of porosity and plate thickness. On the question of porosity, this study found that there is a great influence of their variation on the critical buckling load. It is revealed that the critical buckling load decreases as increasing coefficients of porosity.

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.