• 제목/요약/키워드: carbon nanotube polymer composite

검색결과 105건 처리시간 0.029초

탄소나노튜브 강화 나노복합재료의 연구현황 (Research Status on the Carbon Nanotube Reinforced Nanocomposite)

  • 차승일;김경태;이경호;모찬빈;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2003
  • Carbon nanotubes(CNTs), since their first discovery, have been considered as new promising materials in various fields of applications including field emission displays, memory devices, electrodes, NEMS constituents, hydrogen storages and reinforcements in composites due to their extra-ordinary properties. The carbon nanotube reinforced nanocomposites have attracted attention owing to their outstanding mechanical and electrical properties and are expected to overcome the limit of conventional materials. Various application areas are possible for carbon nanotube reinforced nanocomposites through the functionalization of carbon nanotubes. Carbon nanotube reinforced polymer matrix nanocomposites have been fabricated by liquid phase process including surface functionalization and dispersion of CNTs within organic solvent. In case of carbon nanotube reinforced polymer matrix nanocomposites, the mechanical strength and electrical conducting can be improved by more than an order of magnitude. The carbon nanotube reinforced polymer matrix nanocomposites can be applied to high strength polymers, conductive polymers, optical limiters and EMI materials. In spite of successful development of carbon nanotube reinforced polymer matrix nanocomposites, the researches on carbon nanotube reinforced inorganic matrix nanocomposites show limitations due to a difficulty in homogeneous distribution of carbon nanotubes within inorganic matrix. Therefore, the enhancement of carbon nanotube reinforced inorganic nanocomposites is under investigation to maximize the excellent properties of carbon nanotubes. To overcome the current limitations, novel processes, including intensive milling process, sol-gel process, in-situ process and spark plasma sintering of nanocomposite powders are being investigated. In this presentation, current research status on carbon nanotube reinforced nanocomposites with various matrices are reviewed.

  • PDF

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

Carbon & Polymer 복합체를 이용한 발열 히터

  • 박현기;김기강
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.254.2-254.2
    • /
    • 2013
  • Cu wire 발열패드는 대중화된 히터로 많이 이용되지만 높은 소비전력(70 w이상)으로 에너지 효율을 중요시 하는 미래 소재로는 적합하지 않아 효율이 높은 발열 소재의 연구가 이루어지고 있다. 이에 본 실험에서 Graphite표면에 Amide 기능화를 유도된 Carbon nanotube (Electrical Conductivity $10^5$ s/cm, Thermal Conductivity >3,000 w/mk)를 분산 시켜, Graphite의 우수한 전기 전도도의 특성을 이용할 뿐만 아니라 Carbon nanotube의 접착 특성을 통해 물리적 특성을 향상시켜 면상발열체의 도막 특성 향상뿐만 아니라 효율적 발열을 유도 하고자 한다.

  • PDF

다중벽탄소나노튜브 복합재료의 계면 및 열전도도에 표면처리 방법이 미치는 영향 (Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites)

  • 유기문;이성구;김성룡
    • 접착 및 계면
    • /
    • 제11권4호
    • /
    • pp.174-180
    • /
    • 2010
  • 다중벽탄소나노튜브를 표면처리하여 polymethylmethacrylate (PMMA) 기재에 첨가하여 제조한 고분자 복합재료에서 탄소나노튜브의 표면처리가 계면 및 열전도도에 미치는 효과를 고찰하였다. Coagulation 방법과 atomic transfer radical polymerization (ATRP) 방법을 사용하여 탄소나노튜브를 표면 처리 하여 사용하였으며, ATRP 방법을 적용하여 제조한 복합재료는 coagulation 방법을 사용하여 제조한 복합재료보다 높은 열전도도와 투과도를 가졌다. 순수 PMMA의 열전도도가 0.21 W/mK인데 비하여 ATRP 방법으로 처리한 1 wt%의 탄소나노튜브를 첨가하였을 경우 0.38 W/mK로 열전도도가 향상되었다. 탄소나노튜브와 PMMA기재의 계면을 주사전자현미경을 이용하여 관찰한 결과 탄소나노튜브의 표면처리에 의해 기재 내에 분산이 향상되고 고분자기재-탄소나노튜브 계면에서의 접촉이 용이해져 포논산란이 감소되어 광 투과성을 가지면서 열전도도가 향상된 것으로 보인다.

Development of Carbon Nanotubes and Polymer Composites Therefrom

  • Jain, P.K.;Mahajan, Y.R.;Sundararajan, G.;Okotrub, A.V.;Yudanov, N.F.;Romanenko, A.I.
    • Carbon letters
    • /
    • 제3권3호
    • /
    • pp.142-145
    • /
    • 2002
  • Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.

  • PDF

PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor

  • Park, Jong Hyeok;Lee, Sang Young;Kim, Jong Hun;Ahn, Sunho
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권3호
    • /
    • pp.143-148
    • /
    • 2012
  • The unique effects of highly conductive conducting polymer/SWNT (single walled carbon nanotube) composite nanoparticles in electric double layer capacitors are studied for the enhancement of the adhesive properties, specific capacitance and power characteristics of the electrode. Because the conducting polymer/SWNT composite material, which is believed to act as a polymer binder, an active material for charge storage and a conducting agent, is well distributed on the activated carbon, greatly enhanced adhesion properties, cell capacitance and power characteristics were obtained.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

Preparation and Characterization of Polyimide/Carbon-Nanotube Composites

  • Kim, Bong-Sup;Bae, Sang-Hoon;Park, Young-Hwan;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.357-362
    • /
    • 2007
  • Polyimide/carbon nanotube (CNT) composite films, for potential use in high performance microelectronics and aerospace applications, were prepared by mixing a polyisoimide (PII) solution and a CNT suspension in NMP, followed by casting, evaporation and thermal imidization. The CNTs were modified by a nitric acid treatment to improve the thermal and electrical properties, as well as to provide good dispersion of the CNTs in a polymer matrix. The formation of functional groups on the modified CNT was confirmed by Raman spectroscopy. Scanning electron microscopy revealed the modified CNTs to be well dispersed in the polyimide matrix, with a uniform diameter of ca. 50 nm. The thermal stability of the films containing the CNTs was improved due to the enhanced interfacial interaction and good dispersion between the polyimide matrix and modified CNTs. In addition, the thermal expansion coefficient of the composites films was slightly decreased, but the dielectric constants increased linearly with increasing CNT content.

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.