Preparation and Characterization of Polyimide/Carbon-Nanotube Composites

  • Kim, Bong-Sup (Polymer Technology Institute, Sungkyunkwan University) ;
  • Bae, Sang-Hoon (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Park, Young-Hwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2007.06.30

Abstract

Polyimide/carbon nanotube (CNT) composite films, for potential use in high performance microelectronics and aerospace applications, were prepared by mixing a polyisoimide (PII) solution and a CNT suspension in NMP, followed by casting, evaporation and thermal imidization. The CNTs were modified by a nitric acid treatment to improve the thermal and electrical properties, as well as to provide good dispersion of the CNTs in a polymer matrix. The formation of functional groups on the modified CNT was confirmed by Raman spectroscopy. Scanning electron microscopy revealed the modified CNTs to be well dispersed in the polyimide matrix, with a uniform diameter of ca. 50 nm. The thermal stability of the films containing the CNTs was improved due to the enhanced interfacial interaction and good dispersion between the polyimide matrix and modified CNTs. In addition, the thermal expansion coefficient of the composites films was slightly decreased, but the dielectric constants increased linearly with increasing CNT content.

Keywords

References

  1. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamental and Applications, Marcel Dekker, New York, 1996
  2. G. Rabilloud, Polyimide in Electronics: Chemistry and Applications, Clemson Univ. Press, Clemson, 2000
  3. M. Lee, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  4. J. G. Smith, J. W. Connel, D. M. Delozier, P. T.Lillehei, K. A. Watson, Y. Lin, B. Zhou, and Y. Sun, Polymer, 45, 825 (2004)
  5. S. Iijima, Nature, 354, 56 (1991)
  6. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison, Compos. Sci. Technol., 63, 1637 (2003)
  7. B. Zhu, S. Xie, Z. Xu, and Y. Xu, Compos. Sci. Technol., 66, 548 (2006)
  8. Y. Zhang, Z. Dang, S. Fu, J. Xin, J. Deng, J. Wu, S. Yang, L. Li, and Q. Yan, Chem. Phys. Lett., 401, 553 (2005)
  9. L. Qu, Y. Lin, D. E. Hill, B. Zhou, W. Wang, X. Sun, A. Kitagorodskiy, M. Suarez, J. W. Connell, L. F. Allard, and Y. Sun, Macromolecules, 37, 6055 (2004)
  10. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104, 8911 (2000)
  11. S. B. Oh, Y. J. Kim, and J.-H. Kim, J. Appl. Polym. Sci., 99, 869 (2006)
  12. Y. J. Kim, J.-H. Kim, and J. C. Won, High Perform. Polym., 17, 19 (2005)
  13. S. B. Oh, B. S. Kim, and J.-H. Kim, J. Ind. Eng. Chem., 12, 275 (2006)
  14. B. I. Lee and N. G. Devaraju, J. Appl. Polym. Sci., 99, 3018 (2006) https://doi.org/10.1002/app.21306
  15. A. Yu, H. Hu, E. Bekyarova, M. E. Itkis, J. Gao, B. Zhao, and R. C. Haddon, Compos. Sci. Technol., 66, 1187 (2006)