Browse > Article

Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites  

Yoo, Gi-Moon (Department of Polymer Science and Engineering, Chungju National University)
Lee, Sung-Goo (Information & Electronics Polymer Research Center, Korea Research Institute of Chemical Technology)
Kim, Sung-Ryong (Department of Polymer Science and Engineering, Chungju National University)
Publication Information
Journal of Adhesion and Interface / v.11, no.4, 2010 , pp. 174-180 More about this Journal
Abstract
The effect of carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based poly(methylmethacrylate) (PMMA) composites was investigated. Coagulation and atomic-transfer radical polymerization (ATRP) was applied to modify the surface of multi-wall carbon nano-tube. The composite of ATRP method used carbon nanotube showed the higher transparency and thermal conductivities than that of the coagulation method used. In comparison to the thermal conductivity of pure PMMA, 0.21 W/mK, the ATRP carbon nanotube used PMMA/MWNT composite showed a thermal conductivity of 0.38 W/mK. The interface between carbon nanotube and PMMA was observed by scanning electron microscope and uniform dispersion of carbon nanotube was observed without any void in the PMMA matrix. It may be beneficial to transport the phonon without any scattering and it may result in a higher thermal conductivity.
Keywords
thermal conductivity; carbon nanotube; thermally conductive composites; surface treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. S. Luyt, J. A. Molefi, and H. Krump, Polym. Degrad. Stab., 91, 1629 (2006).   DOI   ScienceOn
2 I. Krupta, I. Novak, and I. Chodak, Synthe. Met., 145, 245 (2004).   DOI
3 L. C. Sim, S. L. Ramanan, and H. Ismail, Thermochim. Acta, 430, 155 (2005).   DOI   ScienceOn
4 W. Zhou, S. Qi, Q. An, H Zhao, and N. Liu, Materials Research Bulletin, 14, 1863 (2007).
5 Y. Xu, D. D. L. Chung, and C. Mroz, Composites. Part A, 32, 1749 (2001).   DOI   ScienceOn
6 D. H. Kim, M. H. Kim, J. H. Lee, J. H. Lim, B. C. Lee, K. M. Kim, J. M. Park, and S. R. Kim, Materials Science Forum, 544, 483 (2007).
7 W. Zhou, S. Qi, H. Li, and S. Shao, Thermochimica. Acta, 452, 36 (2007).   DOI   ScienceOn
8 P. Dashora and G. Gupta, Polymer, 37, 231 (1996).   DOI   ScienceOn
9 D. M. Bigg, Metal-filled polymers, Marcel Dekker, New York, USA (1986.)
10 G. W. Lee, M. Park, J. K. Kim, J. J. I. Lee, and J. H. G. Yoon, Composites : Part A, 37, 727 (2005).
11 F. Du, J. E. Fischer, and K. I. Winey, J. Polym. Sci. B, Polym. Phys., 41, 3333 (2003).   DOI   ScienceOn
12 S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000).   DOI   ScienceOn
13 M. J. Biercuk, M. C. Liaguno, M. Radosavljevic, J. K. Hun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett, 80, 2767 (2002).   DOI   ScienceOn
14 S. L. Shinde and J. S. Goela, High Thermal Conductivity Materials, Springer Science+Business Media, Inc., New York (2006).
15 E. T. Thostenson and T. W. Chou, J. Phys. D. Appl. Phys, 35, 77 (2002).
16 H. Kong, C. Gao, and D. Yan, J. Amer. Chem. Soc., 126, 413 (2004)
17 C. H. Lim and S. S. Fan, Appl. Phys. Lett., 86, 123106 (2005).   DOI   ScienceOn
18 A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Applied Physics Letters, 89, 133102 (2006).   DOI   ScienceOn
19 E. S. Choi, J. S. Brook, D. L. Eaton, M. S. Haik, and K. Dahmen, J. Appl. Phys, 94, 6034 (2003).   DOI   ScienceOn
20 김성룡, 임승원, 김대훈, 이상협, 박종만, 접착 및 계면, 9, 7 (2008).
21 W. Zhou, D. Yu, C. Min, Y. Fu, and Z. Guo, J. Applied Polymer Sci., 112, 1695 (2009).   DOI   ScienceOn
22 S. Shenogrin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett, 85, 2229 (2004).   DOI   ScienceOn
23 R. Strumpler and J. Glaz-Reichenbach, J. Electroceramics, 3, 329 (1999).   DOI   ScienceOn