• 제목/요약/키워드: carbon nanostructures

검색결과 103건 처리시간 0.029초

원뿔형 CNT-W 팁의 TiN 완충막 유무에 따른 전계방출 특성 (Effects of TiN bufer on field emission properties of conical-type tungsten tips with carbon nanotubes coated)

  • 김영광;윤성준;김원;김종필;박창균;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1271-1272
    • /
    • 2007
  • Experimental results regarding to the structural properties of carbon nanotubes (CNTs) and the field-emission characteristics of CNT-coated tungsten (W) tips are presented. CNTs are successfully grown on conical-type W-tips by inductively coupled plasma-chemical vapor deposition (ICP-CVD) with or without inserting a TiN-buffer layer prior to the formation of Ni catalysts. For all the CNTs grown, their nanostructures, morphologies, and crystalline structures are analyzed by FESEM, HRTEM, and Raman spectroscopy. Furthermore, the emission properties of CNT-based field-emitters are characterized to estimate the maximum current density and the threshold voltage. The results obtained in this study indicate that the emission current level of the CNT-emitter without using a TiN buffer is desirable for the application of micro-focused x-ray systems.

  • PDF

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • 신용승;장현식;임재영;임세윤;이종운;이재현;;허근;김태근;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구 (Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries)

  • 김용태;최진섭
    • 공업화학
    • /
    • 제32권3호
    • /
    • pp.243-252
    • /
    • 2021
  • 전기자동차(EV) 및 중대형 에너지 저장 장치(ESS)의 활용을 위한 차세대 에너지 저장 장치에 대한 요구가 증가함에 따라, 높은 출력 및 안정성 등의 특성을 갖는 리튬 이온 전지 개발이 시급한 과제로 떠오르고 있다. 리튬 이온 이차 전지의 성능은 주로 전극 재료의 물리/화학적 특성에 의해 결정되는데, TiO2는 우수한 안정성 및 높은 안정성, 친환경적 특성으로 인해 현재 상용화된 탄소계 음극재를 대체할 수 있는 물질로 높은 관심을 받고 있다. 특히, 양극산화를 통해 제조된 자기 정렬된 TiO2 마이크로 및 나노 구조는 차세대 리튬 이온 이차 전지의 유망한 음극 소재 물질로 많은 연구가 이루어지고 있다. 본 총설 논문에서는 양극산화를 통한 TiO2 나노 튜브 및 마이크로콘 구조 메커니즘 및 구조 발달에 영향을 미치는 인자에 대한 설명을 다루었다. 또한, TiO2의 낮은 전기전도도 및 용량 한계를 극복하기 위한 TiO2 기반 복합체를 리튬 이온 이차 전지의 음극재로 활용한 연구를 소개하였다.

One-dimensional Nanomaterials for Field Effect Transistor (FET) Type Biosensor Applications

  • Lee, Min-Gun;Lucero, Antonio;Kim, Ji-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.165-170
    • /
    • 2012
  • One-dimensional, nanomaterial field effect transistors (FET) are promising sensors for bio-molecule detection applications. In this paper, we review fabrication and characteristics of 1-D nanomaterial FET type biosensors. Materials such as single wall carbon nanotubes, Si nanowires, metal oxide nanowires and nanotubes, and conducting polymer nanowires have been widely investigated for biosensors, because of their high sensitivity to bio-substances, with some capable of detecting a single biomolecule. In particular, we focus on three important aspects of biosensors: alignment of nanomaterials for biosensors, surface modification of the nanostructures, and electrical detection mechanism of the 1-D nanomaterial sensors.

Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Tungsten Oxide nanowire surfaces

  • 곽근재;이미경;용기중
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • The effects of surface energyon the wetting transition for impinging water droplets were experimentally investigated on the chemically modified WOx nanowire surfaces. We could modify the surface energy of the nanostructures through chemisorption of alkyltrichlorosilanes with various carbon chain lengths and by the UV-enhanced decomposition of self assembled monolayer (SAM) molecules chemically adsorbedon the array. Three surface wetting states could be identified through the balance between antiwetting and wetting pressures. This approach establishes simple strategy for the design criteria for water-repellent surface to impinging droplets.

  • PDF

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • 좌용호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

1차원 무기 반도체 신 물질 재료의 연구 개발 동향

  • 류학기
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.29-37
    • /
    • 2018
  • In order to overcome the problems of existing low-dimensional materials (carbon nanotubes, graphene, transition metal dichalcogenides, etc) researches on new 1D materials have been studied. In the case of $LiMo_3Se_3$ and $Mo_6S_{9-x}I_x$, continuous researches have been carried out for 3D bulk synthesis and atomic scale dispersion. Recently, quantum confinement effect of $LiMo_3Se_3$ and bio-stability of $Mo_6S_{9-x}I_x$ have been proven and various applications have started to be studied. In addition, device application results using new 1D materials such as $Sb_2Se_3$ (optoelectronic devices using the property of effectively reducing exciton decay due to no dangling bond) and $VS_4$ (electrochemical energy storage using the space between 1-D nanostructures) have been reported very importantly. Therefore, it can be claimed that it has reached a very important time to find and synthesize new 1D materials and to report various characteristics not existing.

반투명 페로브스카이트 태양전지용 투명전극 소재 (Transparent Electrodes for Semitransparent Perovskite Solar Cells)

  • 이필립;고민재
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.74-80
    • /
    • 2018
  • Recently, perovskite solar cells have shown tremendous improvement in power conversion efficiencies. Moreover, they have potential in semitransparent solar cell applications due to their high absorption coefficients. In order to fabricate semitransparent perovskite solar cells with good performance, it is essential to consider the suitability of transparent electrode materials in various aspects, such as transparency, conductivity and fabrication process. In this review, candidate materials for transparent electrodes in perovskite solar cells including carbon-based nanomaterials, conductive polymers and metallic nanostructures are discussed.