• 제목/요약/키워드: carbon nanomaterials

검색결과 169건 처리시간 0.024초

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

One-dimensional Nanomaterials for Field Effect Transistor (FET) Type Biosensor Applications

  • Lee, Min-Gun;Lucero, Antonio;Kim, Ji-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.165-170
    • /
    • 2012
  • One-dimensional, nanomaterial field effect transistors (FET) are promising sensors for bio-molecule detection applications. In this paper, we review fabrication and characteristics of 1-D nanomaterial FET type biosensors. Materials such as single wall carbon nanotubes, Si nanowires, metal oxide nanowires and nanotubes, and conducting polymer nanowires have been widely investigated for biosensors, because of their high sensitivity to bio-substances, with some capable of detecting a single biomolecule. In particular, we focus on three important aspects of biosensors: alignment of nanomaterials for biosensors, surface modification of the nanostructures, and electrical detection mechanism of the 1-D nanomaterial sensors.

Nano-Scale Observation of Nanomaterials by In-Situ TEM and Ultrathin SiN Membrane Platform

  • 안치원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.657-657
    • /
    • 2013
  • In-situ observations of nano-scale behavior of nanomaterials are very important to understand onthe nano-scale phenomena associated with phase change, atomic movement, electrical or optical properties, and even reactions which take place in gas or liquid phases. We have developed on the in-situ experimental technologies of nano-materials (nano-cluster, nanowire, carbon nanotube, and graphene, et al.) and their interactions (percolation of metal nanoclusters, inter-diffusion, metal contacts and phase changes in nanowire devices, formation of solid nano-pores, melting behavior of isolated nano-metal in a nano-cup, et al.) by nano-discovery membrane platform [1-4]. Between two microelectrodes on a silicon nitride membrane platform, electrical percolations of metal nano-clusters are observed with nano-structures of deposited clusters. Their in-situ monitoring can make percolation devices of different conductance, nanoclusters based memory devices, and surface plasmonic enhancement devices, et al. As basic evidence on the phase change memory, phase change behaviors of nanowire devices are observed at a nano-scale.

  • PDF

기계공학 관점에서 살펴본 나노소재 산업의 발전 및 비전 (Development and Prospect of Nanomaterials Industries from the Perspective of Mechanical Engineering)

  • 김대성;최만수
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권1호
    • /
    • pp.69-77
    • /
    • 2017
  • 나노기술은 IT, BT 기술과 함께 21세기에 기술혁명을 주도해 나갈 핵심 기술이기에 현재 우리나라를 비롯한 전 세계의 선진국들이 이 분야에 많은 연구 역량을 집중시키고 있고, 그 중에서도 나노소재 산업은 이 경쟁의 중심에 있다고 볼 수 있다. 본 연구에서는 기계공학 측면에서 나노소재 산업에 대하여 살펴보았다. 나노소재는 나노크기의 재료라는 점에서 기존의 마이크론 혹은 서브마이크론 재료에 서 발견할 수 없는 특별한 효과를 나타내거나 전혀 새로운 응용분야를 만들어낼 가능성이 크다. 특히 환경, 바이오, 에너지, 촉매 등 다양한 분야에서 그 응용이 기대된다.

Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조 (Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization)

  • 주영태;진선미;김양수
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.452-457
    • /
    • 2009
  • 다중벽 탄소나노튜브 및 전도성 고분자인 PEDOT으로 이루어진 하이브리드 나노재료를 제조하였다. 다중벽 탄소나노튜브 표면에 처리반응을 수행함으로써 -Br 특성기를 갖는 다중벽 탄소나노튜브를 제조하였으며, 이를 중합반응의 개시제로 사용하였다. 이와 함께 MMA를 사용하여 촉매와 리간드 존재 하에서 원자이동 라디칼중합 공정을 수행함으로써 다중벽 탄소나노튜브 표면에 PMMA가 공유결합된 나노복합체를 제조하였다. 미니에멀젼 중합공정을 통하여 제조된 PS 수용성 에멀젼에 EDOT과 산화가를 투입하여 산화중합을 수행함으로써 core-shell 구조를 갖는 PEDOT/PS 나노입자를 제조하였다. 실란화합물로 표면 처리한 silica 입자를 PEDOT:poly(styrene sulfonate) (PSS) 수용성 분산액에 투입한 후 표면화학 반응과정을 수행함으로써 silica 외벽에 PEDOT:PSS가 코팅된 나노입자를 제조하였다. 하이브리드 나노재료들은 TEM, FE-SEM, TGA, EDX, UV 그리고 FT-IR 등을 사용하여 분석되었다.

Nanotechnologies in Displays : TFTs with Carbon Nanotubes and Semiconductor Nanowires.

  • Pribat, Didier;Cojocaru, Costel;Gowtham, M.;Eude, L.;Balan, A.;Bondavalli, P.;Legagneux, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1245-1248
    • /
    • 2007
  • We propose new approaches to thin film transistor fabrication that use carbon nanotubes and semiconductor nanowires as active elements. These nanomaterials which are essentially studied in the context of the post CMOS era will certainly impact the active matrix display industry in the near future.

  • PDF

MWCNT thin film based supercapictor using spray deposition and gel electrolytes

  • Han, Song-Yi;Park, Sung-Hwak;Kim, Sung-Hyun;Kim, Sun-Min;Han, Joung-Hoon;Bae, Joon-Ho;Lee, Churl-Seung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.465-465
    • /
    • 2011
  • In recent years, electrochemical supercapacitors have attracted much attention due to their high power density, long life cycles, and high efficiency. Some supercapacitors using CNTs have been reported, but there are several issues to be resolved for further development of CNT based supercapacitors. One issue is time consuming procedures to prepare CNT films, which may provide poor control of CNT uniformity over the large area of the substrates. Another is new electrolytes replacing the conventional liquid electrolytes in supercapacitors. In this work, We have successfully demonstrated that spray deposition method of multiwalled CNT films using gel electroytes could be promising for CNT-based supercapacitors on ITO substrates. Specific capacitances using gel electrolyte reached up to 1.5 F/g and 9 mF/$cm^2$, and internal resistance was 28 ${\Omega}$. Specific capacitances and internal resistance of supercapacitors with gel electrolyte were better than or comparable to those with liquid electrolytes($KNO_3$, $Na_2SO_4$), indicating that gel electrolytes could replace liquid counterparts in CNT-based supercapacitors. Combined with gel electrolyte, spray deposition method could provide low cost and easily scalable process for high performance supercapacitors using CNT films on ITO for applications in display devices.

  • PDF

신선 가공에 의한 시멘타이트 재분해가 기계적 특성에 미치는 영향 (Effects of Cementite Dissolution on the Mechanical Properties of the Heavily Drawn Hyper-Eutectoid Steel Wires used for Steel Cords)

  • 양요셉;배종구;박찬경
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.111-117
    • /
    • 2008
  • The effects of the dissolved cementite on the mechanical properties have been experimentally investigated. The steel wires were fabricated depending on the carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a hunter fatigue tester and torsion tester specially designed for thin-sized wires. The results showed that as the drawing strain and carbon content increased, the fatigue resistance and the torsional ductility of the steel wires decreased, while the tensile strength increased. In order to elucidate this behavior, the microstructure in terms of lamellar spacing (${\lambda}_p$), cementite thickness ($t_c$) and morphology of cementite was observed by advanced analysis techniques such as transmission electron microscope (TEM) and 3 dimensional atom probes (3-D AP).