Effects of Cementite Dissolution on the Mechanical Properties of the Heavily Drawn Hyper-Eutectoid Steel Wires used for Steel Cords

신선 가공에 의한 시멘타이트 재분해가 기계적 특성에 미치는 영향

  • Yang, Yo-Sep (Dept. of Materials Science and Engineering, POSTECH, National Center for Nanomaterials Technology) ;
  • Bae, Jong-Gu (KISWIRE R&D center) ;
  • Park, Chan-Gyung (Dept. of Materials Science and Engineering, POSTECH, National Center for Nanomaterials Technology)
  • 양요셉 (포항공과대학교 신소재공학과 포항나노기술집적센터) ;
  • 배종구 (고려제강 기술연구소) ;
  • 박찬경 (포항공과대학교 신소재공학과 포항나노기술집적센터)
  • Received : 2008.01.03
  • Published : 2008.03.22

Abstract

The effects of the dissolved cementite on the mechanical properties have been experimentally investigated. The steel wires were fabricated depending on the carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a hunter fatigue tester and torsion tester specially designed for thin-sized wires. The results showed that as the drawing strain and carbon content increased, the fatigue resistance and the torsional ductility of the steel wires decreased, while the tensile strength increased. In order to elucidate this behavior, the microstructure in terms of lamellar spacing (${\lambda}_p$), cementite thickness ($t_c$) and morphology of cementite was observed by advanced analysis techniques such as transmission electron microscope (TEM) and 3 dimensional atom probes (3-D AP).

Keywords

References

  1. K. Becker, Wire ind. 7, 531 (1978)
  2. H. Sunwoo, M. E. Fine, M. Mechii, and D. H. Stone, Met. Trans. A 13A, 2035 (1982)
  3. J. D. Embury and R. M. Fisher, Acta Metal. 14, 147 (1966) https://doi.org/10.1016/0001-6160(66)90296-3
  4. K. Katagiri, T. Sato, H. S. Shin, M. Takashashi, H. Mori, H. Tashiro, and S. Sasaki, Fatigue Fract Engng Mater Strcut. 20, 1677 (1997) https://doi.org/10.1111/j.1460-2695.1997.tb01520.x
  5. M. Dollar, I. M. Bernstein, and A. W. Thompson, Acta Metal. 36, 311 (1988) https://doi.org/10.1016/0001-6160(88)90008-9
  6. Y. S. Yang, H. J. Jun, S. Y. Park, S. H. Lim, and D. T. Ban, Mater Sci. Forum 475-479, 4125 (2005)
  7. I. Verpoest, E. Aernoudt, A. Deruyttere, and M. De Bondt, Int. J Fatigue 7, 199 (1985) https://doi.org/10.1016/0142-1123(85)90051-9
  8. J. L. Lorca, and V. Sanchez-Galvez, Fatigue Fract. Engng. Mater. Strcut. 12, 31 (1989) https://doi.org/10.1111/j.1460-2695.1989.tb00506.x
  9. Y. S. Yang, J. G. Bae, and C. G. Park, Mater Sci. Eng. A (In press)
  10. V. N. Gridnev, V. G. Gavriljuk, N. P. Kushnareva, and V. G. Prokopenko, Phys Metals Metallorg 42, 112 (1976)
  11. V. G. Gavriljuk. Mater Sci. Eng A345, 81 (2003)
  12. V. N. Gridnev and V. G. Gavriljuk. Metal Phys. 4, 531 (1982)
  13. J. Languillaume, G. Kapelski, and B. Baudelet. Acta Mater. 45, 1201 (1997) https://doi.org/10.1016/S1359-6454(96)00216-9
  14. M. H. Hong, W. T. Reynolds, T. Tarui, and K. Hono, Metall Mater. Trans A 30A, 717 (1999)
  15. A. R. Waugh, S. Paetke, and D. V. Edmonds, Metallography 4, 237 (1981)
  16. H. G. Read, W. T. Reynolds, K. Hono, and T. Tarui, Scripta Mater. 37, 1221 (1997) https://doi.org/10.1016/S1359-6462(97)00223-6
  17. F. Danoix, X. Sauvage, D. Julien, and J. Copreaux. Mater Sci. Eng A 250, 8 (1998) https://doi.org/10.1016/S0921-5093(98)00529-2
  18. Y. Murakami, Stress Intensity Factor Hand Book. Perganom (1986)
  19. G. Langford, Met Trans A 8A, 864 (1977)