Browse > Article

Effects of Cementite Dissolution on the Mechanical Properties of the Heavily Drawn Hyper-Eutectoid Steel Wires used for Steel Cords  

Yang, Yo-Sep (Dept. of Materials Science and Engineering, POSTECH, National Center for Nanomaterials Technology)
Bae, Jong-Gu (KISWIRE R&D center)
Park, Chan-Gyung (Dept. of Materials Science and Engineering, POSTECH, National Center for Nanomaterials Technology)
Publication Information
Korean Journal of Metals and Materials / v.46, no.3, 2008 , pp. 111-117 More about this Journal
Abstract
The effects of the dissolved cementite on the mechanical properties have been experimentally investigated. The steel wires were fabricated depending on the carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a hunter fatigue tester and torsion tester specially designed for thin-sized wires. The results showed that as the drawing strain and carbon content increased, the fatigue resistance and the torsional ductility of the steel wires decreased, while the tensile strength increased. In order to elucidate this behavior, the microstructure in terms of lamellar spacing (${\lambda}_p$), cementite thickness ($t_c$) and morphology of cementite was observed by advanced analysis techniques such as transmission electron microscope (TEM) and 3 dimensional atom probes (3-D AP).
Keywords
cementite dissolution; mechanical properties; drawing strain; carbon content; Laser assisted 3-D AP;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 V. G. Gavriljuk. Mater Sci. Eng A345, 81 (2003)
2 G. Langford, Met Trans A 8A, 864 (1977)
3 M. Dollar, I. M. Bernstein, and A. W. Thompson, Acta Metal. 36, 311 (1988)   DOI   ScienceOn
4 J. L. Lorca, and V. Sanchez-Galvez, Fatigue Fract. Engng. Mater. Strcut. 12, 31 (1989)   DOI
5 K. Becker, Wire ind. 7, 531 (1978)
6 M. H. Hong, W. T. Reynolds, T. Tarui, and K. Hono, Metall Mater. Trans A 30A, 717 (1999)
7 H. G. Read, W. T. Reynolds, K. Hono, and T. Tarui, Scripta Mater. 37, 1221 (1997)   DOI   ScienceOn
8 Y. Murakami, Stress Intensity Factor Hand Book. Perganom (1986)
9 Y. S. Yang, H. J. Jun, S. Y. Park, S. H. Lim, and D. T. Ban, Mater Sci. Forum 475-479, 4125 (2005)
10 A. R. Waugh, S. Paetke, and D. V. Edmonds, Metallography 4, 237 (1981)
11 J. Languillaume, G. Kapelski, and B. Baudelet. Acta Mater. 45, 1201 (1997)   DOI   ScienceOn
12 I. Verpoest, E. Aernoudt, A. Deruyttere, and M. De Bondt, Int. J Fatigue 7, 199 (1985)   DOI   ScienceOn
13 K. Katagiri, T. Sato, H. S. Shin, M. Takashashi, H. Mori, H. Tashiro, and S. Sasaki, Fatigue Fract Engng Mater Strcut. 20, 1677 (1997)   DOI   ScienceOn
14 Y. S. Yang, J. G. Bae, and C. G. Park, Mater Sci. Eng. A (In press)
15 H. Sunwoo, M. E. Fine, M. Mechii, and D. H. Stone, Met. Trans. A 13A, 2035 (1982)
16 F. Danoix, X. Sauvage, D. Julien, and J. Copreaux. Mater Sci. Eng A 250, 8 (1998)   DOI   ScienceOn
17 J. D. Embury and R. M. Fisher, Acta Metal. 14, 147 (1966)   DOI   ScienceOn
18 V. N. Gridnev and V. G. Gavriljuk. Metal Phys. 4, 531 (1982)
19 V. N. Gridnev, V. G. Gavriljuk, N. P. Kushnareva, and V. G. Prokopenko, Phys Metals Metallorg 42, 112 (1976)