• Title/Summary/Keyword: carbon molecular sieve membrane

Search Result 22, Processing Time 0.033 seconds

Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes (탄화조건이 메틸이미드계 탄소 분자체 중공사 분리막의 기체 투과특성에 미치는 영향 연구)

  • Seong, Ki Hyeok;Song, Ju Sub;Koh, Hyung Chul;Ha, Seong Yong;Han, Moon Hee;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.332-342
    • /
    • 2013
  • In the present study, carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a methyl imide hollow fiber precursor, which was spun by non-solvent induced phase separation process. And effects of carbonization parameters such as pre-oxidation, pyrolysis, and post-oxidation on the gas permeation were systematically investigated. CMS membrane having the highest gas flux was obtained by carbonizing the precursor through a combined process of air pre-oxidation at $250^{\circ}C$ for 2h, nitrogen pyrolysis at $550^{\circ}C$ for 2h, and oxygen post-oxidation at $250^{\circ}C$ for 2h. The optimized membrane showed a considerable gas permeance : the $H_2$, He, $CO_2$ permeances were 69.72, 35.61, 31.01 GPU, respectively, and the $O_2$ and $N_2$ permeances were ignorable. Therefore, it was clear that the prepared CMS hollow fiber membrane was a promising membrane for recovering small gases such as hydrogen and hellium and carbon dioxide.

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry (전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Han, Sang Hoon;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.

Carbon Molecular Sieve Membranes Derived from Thermally Labile Polymer Containing Polyimide and Their Gas Separation Properties (열분해성 고분자 도입에 따른 탄소분자체막의 기체 투과 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.182-190
    • /
    • 2003
  • Carbon molecular sieve (CMS) membranes were prepared by the pyrolysis of polyvinylpyrrolidone containing polyimide precursors. We have prepared the polymer precursors, pyrolyzed polymer and investigated the effect of pyrolyzing polymer on the characteristics of carbon structures and gas separation properties of the CMS membranes. Thermogravimetric analysis (TGA) showed the two-step decomposition of polymer precursor. First decomposition of the pyrolyzing polymer began around $400^{\circ}C$ while carbonizing polymer showed the decomposition around $550^{\circ}C$. The gas permeabilities through the CMS membranes were enhanced by the introduction of the pyrolyzing polymer and decreased with increased final pyrolysis temperature. The CMS membrane pyrolyzed at $550^{\circ}C$. derived from precursor containing 5wt% PVP as a pyrolyzing polymer showed gas permeability for $O_2$ of 808 Barrers [$10^{-10}cm^3 (STP)cm/cm^2scmHg]$ and $O_2/N_2$ selectivity of 7.

Hydrogen Separation of Carbon Molecular Sieve Membranes Derived from Polyimides Having Decomposable Side Groups (열분해성 그룹이 도입된 폴리이미드로부터 유도된 탄소분자체막의 수소 분리 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups ($-CH_3$ and $-CF_3$) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at $700^{\circ}C$ showed the $H_2$ permeability of 3,809 Baller [$1{\times}10^{-10}$ H $\textrm{cm}^$(STP)cm/$\textrm{cm}^2$.s.cmHg], $H_2$/$N_2$, selectivity of 46 and $H_2$/$CH_4$ selectivity of 130 while the CMS membranes derived from polyimide showed the H$_2$ permeability of 3,272 Barrer, $H_2$/$N_2$ selectivity of 136 and $H_2$/$CH_4$ selectivity of 177.