Carbon Molecular Sieve Membranes Derived from Thermally Labile Polymer Containing Polyimide and Their Gas Separation Properties

열분해성 고분자 도입에 따른 탄소분자체막의 기체 투과 특성

  • Young Moo Lee (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Youn Kook Kim (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Ji Min Lee (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Ho Bum Park (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2003.09.01

Abstract

Carbon molecular sieve (CMS) membranes were prepared by the pyrolysis of polyvinylpyrrolidone containing polyimide precursors. We have prepared the polymer precursors, pyrolyzed polymer and investigated the effect of pyrolyzing polymer on the characteristics of carbon structures and gas separation properties of the CMS membranes. Thermogravimetric analysis (TGA) showed the two-step decomposition of polymer precursor. First decomposition of the pyrolyzing polymer began around $400^{\circ}C$ while carbonizing polymer showed the decomposition around $550^{\circ}C$. The gas permeabilities through the CMS membranes were enhanced by the introduction of the pyrolyzing polymer and decreased with increased final pyrolysis temperature. The CMS membrane pyrolyzed at $550^{\circ}C$. derived from precursor containing 5wt% PVP as a pyrolyzing polymer showed gas permeability for $O_2$ of 808 Barrers [$10^{-10}cm^3 (STP)cm/cm^2scmHg]$ and $O_2/N_2$ selectivity of 7.

Polyvinylpyrrolidone을 포함하는 폴리이미드 전구체의 열분해 공정을 통해 탄소분자체막을 제조하였으며 열분해성 고분자를 포함하는 전구체를 통해 제조된 막의 구조 및 기체 투과 특성에 대해 연구 하였다. 열분해성 고분자를 포함하는 전구체의 열적 특성을 조사한 결과 열적으로 안정한 폴리이미드의 경우 $550^{\circ}C$에서 분해되는 것을 확인할 수 있었으며 열분해성 고분자의 경우 $400^{\circ}C$에서 분해가 시작되는 것을 TCA를 통해 확인하였다 제조된 탄소분자체막의 기체 투과 특성을 조사한 결과 최종 열분해 온도가 증가됨에 따라 기체 투과도는 감소하였으며 열분해성 고분자를 포함한 전구체로부터 제조된 탄소분자체막의 경우 기체 투과가 향상됨을 알 수 있었다. 열분해성 고분자를 함유하는 전구체로부터 $550^{\circ}C$에서 열분해를 통해 제조된 탄소분자체막의 경우 $O_2$ 투과도 808 Barrer $[10^{-10}cm^3 (STP)cm/cm^2scmHg]$$O_2$/$N_2$선택도 7을 나타내었다.

Keywords

References

  1. J. Membrane. Sci. v.177 Adsorption-slective carbon membranes for gas separation A.B.Fuertes https://doi.org/10.1016/S0376-7388(00)00458-0
  2. Sep. Sci. Tech. v.22 The carbon molecular sieve membranes. General properties and the permeability of $CH_{4}/H_{2}$ mixture J.E.Koresh;A.Soffer https://doi.org/10.1080/01496398708068993
  3. Ind. Eng. Chem. Res. v.33 Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane Y.D.Cheng;R.T.Yang https://doi.org/10.1021/ie00036a033
  4. J. Membrane Sci. v.110 Performance, and pore characterization of nanoporous carbon membranes for gas separation M.B.Rao;S.Sircar https://doi.org/10.1016/0376-7388(95)00241-3
  5. Sep. Sci. Technol. v.31 Asymmetric molecular sieve carbon membranes S.Wang;M.Zeng;Z.Wang https://doi.org/10.1080/01496399608001048
  6. Microporous Mater v.8 F.K.Katsaros;T.A.Steriotis;A.K.Stubos;A.Mitropoulos;N.K.Kanellopulos;S.Tennison https://doi.org/10.1016/S0927-6513(96)00080-6
  7. J. Membrane Sci. v.95 Highly asymmetrical carbon membrane V.M.Linkov;R.D.Sanderson;E.P.Jacobs https://doi.org/10.1016/0376-7388(94)85032-1
  8. Carbon v.30 Carbon molecular sieve films from polyimide H.Hatori;Y.Yamada;M.Shiraishi;H.Nakata;S.Yoshitomi https://doi.org/10.1016/0008-6223(92)90095-E
  9. Carbon v.32 Carbon molecular sieve gas separation membranes.Ⅰ. Preparation and characterization based on polyimide precursors C.W.Jones;W.J.Koros https://doi.org/10.1016/0008-6223(94)90135-X
  10. J. Chem. Soc. Chem. Commun. v.11 Molecular sieving effect of carbonized Kapton polyimide membrane H.Suda;K.Haraya
  11. Membr. J. v.4 no.1 Prepatation, characterization, and gas permeation properties of carbon molecular sieve membranes derived from dense p84-polyimide film H.B.Park;S.Y.Mam;J.G.Jang;Y.M.Lee
  12. Ind. Eng. Chem. Res. v.35 Separation of ethane/ethylene and propane/propylene system with a carbonized BPDA-pp'ODA polyimide J.Hayashi;H.Mizuta;M.Yamamoto;K.Kusakabe;S.Morooka https://doi.org/10.1021/ie960264n
  13. J. Chem. Soc. Chem. Commun. v.11 Molecular sieving effect of carbonized Kapton polyimide membrane H.Suda;K.Haraya
  14. Ind. Eng. Chem. Res. v.34 Simultaneous improvement of permeance and permselectivity of 3,3',4,4'-biphenyltetracarboxylic dianhydride-4,4'-oxydianiline polyimide membrane by carbonization J.Hayashi;M.Yamamoto;K.Kusakabe;S.Morooka https://doi.org/10.1021/ie00039a028
  15. A review on the latest development of carbon membranes for gas separation v.193 A.F.Ismail;L.I.B.David
  16. Extended abstracts 22$^{nd}$biennial conference on carbon H.Hatori;Y.Yamada;M.Shiraishi;Y.Iimura;T.Kimura
  17. Carbon v.35 Novel prepartion methde for the production of mesoporous carbon fiber from a polymer blend J.Ozaki;N.Endo;W.Ohizumi;K.Igarashi;M.Nakahara;A.Oya https://doi.org/10.1016/S0008-6223(97)89878-8
  18. Extended abstracts, In: International symposium on carbon T.Takeich;M.Zuo;A.Ito
  19. J. Appl. Polym. Sci. v.87 no.57 Effects of molecular weight of polyvinylpyrrolidone on precipitation kinetics during the formation of asymmetric polyacrylonitrile membrane J.S.Kang;Y.M.Lee
  20. Polymer v.41 The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes W.Y.Chuang;T.H.Young,W.Y.Chiu;C.Y.Lin https://doi.org/10.1016/S0032-3861(99)00818-6
  21. J. Appl. Polym. Sci. v.81 Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion J.H.Kim;B.R.Min;H.C.Park;J.O.Won;Y.S.Kang https://doi.org/10.1002/app.1804
  22. Polymer v.44 Novel polyimides derived from 2,3,3',4',-benzophenonetetracarboxylic dianhydride X.Fang;Z.Wang;Z.Yang;L.Gao;Q.Li;M.Ding https://doi.org/10.1016/S0032-3861(03)00181-2
  23. Polymer Degradation and Stability v.60 Characterization, and degradation of some silicon-containing polyimides T.C.Chang;K.H.Wu https://doi.org/10.1016/S0141-3910(97)00063-3
  24. Ind. Eng. Chem. Res. v.41 High pressure CO₂/CH₄ separation using carbon molecular sieve hollow fiber membranes D.Q.Vu;W.J.Koros;S.J.Miller https://doi.org/10.1021/ie010119w
  25. Ind. Eng. Chem. Res. v.35 Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties C.G.Vincent;W.J.Koros https://doi.org/10.1021/ie950746j
  26. J. Membrane Sci. v.174 Air separation properties of flat sheet homogeneous pyrolytic carbon membranes G.A.Singh;W.J.Koros https://doi.org/10.1016/S0376-7388(00)00392-6
  27. J. Membrane Sci. v.134 Gas permeation properties and characterization of asymmetric carbon membranes perpared by pyrolyzing asymmetric polyimide hollow fiber membrane Y.Kusuki;H.Shimazaki;N.Tanihara;S.Nakanishi;T.Yoshinaga https://doi.org/10.1016/S0376-7388(97)00118-X
  28. J. Phys. Chem. v.101 Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide H.Suda;K.Haraya https://doi.org/10.1021/jp963997u
  29. Chem, Matr. v.14 Novel pyrolytic carbon membranes containing silica: Preparation and characterization H.B.Park;I.Y.Suh;Y.M.Lee https://doi.org/10.1021/cm020216v