• Title/Summary/Keyword: carbon from oil seeds

Search Result 14, Processing Time 0.021 seconds

Physicochemical properties of Sancho (Zanthoxylum schinifolium) seeds oil base extracts from different method (추출방법에 따른 산초 종자 정유성분의 이화학적 특성)

  • Jung, Mi Seun;Shin, Yeon Mi;Kim, Myeong Kyu;Kim, Chul Ho;Choi, Jine Shang
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.827-833
    • /
    • 2013
  • In this study we investigated physicochemical properties of Zanthoxylum schinifolium seeds oil base extracts. Supercritical fluid extraction (SFE), roast pressure (RPM) and steam pressure (SPM) method were used for oil base extracts. The pressure and temperature conditions of SFE method were $70{\sim}80kgf/cm^2$ and below $30^{\circ}C$, respectively, by newly designed SFE-$CO_2$ system. The yield of extraction was 38.5% at the SFE method and others were 30% in each. Refractive index of oil base extracts, there was also no difference between them as 1.470~1.473. At the SFE method, viscosity observed higher value better than two method that showed as 181.88~209.93 according to the extraction time. Three oil base extracts showed difference in color which was low in b value at SFE, especially. The result of acid value at RPM that was lower as 0.93 mg/g than 2.36~2.64 mg/g of SFE method. Saponification value ranged $182.96{\sim}196.57mg{\cdot}KOH/g$ in three extraction method. At SPM, TBA value showed as 158.96 mg/kg, but in the SFE method ranged higher value as 201.30~347.14 mg/kg. Fatty acids analysed with 18 varieties in all oil base extracts and the composition of saturated/unsaturated fatty acids was 17:83(v/v) at SEF. Especially, ${\omega}$-3,6,9 fatty acids observed at SFE and SPM, but did not appeared at RPM. Fatty acid of ${\omega}$-6,9 detected in all cases.

Development of Cucumber Cotyledon in View of Metabolic Pathways and Organelle (세포내 소기관과 물질대사의 관점에서 오이 떡잎의 발달)

  • Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.778-785
    • /
    • 2021
  • The germination of cucumber seeds begins with the degradation of reserved oil to fatty acids within the lipid body, which are then further metabolized to acyl-CoA. The acyl-CoA moves from the lipid body to the glyoxysome following β-oxidation for the production of acetyl-CoA. As an initial carbon source supplier, acetyl-CoA is an essential molecule in the glyoxylate cycle within the glyoxysome, which produces the metabolic intermediates of citrate and malate, among others. The glyoxylate cycle is a necessary metabolic pathway for oil seed plant germination because it produces the metabolic intermediates for the tricarboxylic acid (TCA) cycle and for gluconeogenesis, such as the oxaloacetate, which moves to the cytosol for the initiation of gluconeogenesis by phophoenolpyruvate carboxykinase (PEPCK). Following reserved oil mobilization, the production and transport of various metabolic intermediates are involved in the coordinated operation and activation of multiple metabolic pathways to supply directly usable carbohydrate in the form of glucose. Furthermore, corresponding gene expression regulation compatibly transforms the microbody to glyoxysome, which contains the organelle-specific malate synthase (MS) and isocitrate lyase (ICL) enzymes during oil seed germination. Together with glyoxylate cycle, carnitine, which mediates the supplementary route of the acetyl-CoA transport mechanism via the mitochondrial BOU (A BOUT DE SOUFFLE) system, possibly plays a secondary role in lipid metabolism for enhanced plant development.

Influence of Seed-filling Temperature on the Seed Quality and Water Soaking Properties of Soybean (등숙온도가 콩의 품질 및 수분흡수 특성에 미치는 영향)

  • Jung, Gun-Ho;Kwon, Young-Up;Lee, Jae-Eun;Kim, Yul-Ho;Kim, Dae-Wook;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Shin, Seong-Hyu;Baek, Seong-Bum;Lee, Byung-Moo;Chung, Ill-Min;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.308-318
    • /
    • 2013
  • Korean soybean varieties, 'Seonyu' and 'Hwangkeum' were planted in 2012, and three temperature gradient, Tc($19.8^{\circ}C$, ambient temperatured), $Tc+1.7^{\circ}C$, and $Tc+2.5^{\circ}C$, were artificially created by controlling the green house system during seed filling period. Mature seeds that developed under these conditions were analyzed for variances in physicochemical properties. The 100-seed weight and seed-coat ratio of soybean were decreased, but small seed rate was increased by high temperature during seed filling period. Protein content was increased, but oil content was decreased significantly with increasing the seed filling temperature. The decrement of carbon to nitrogen ratio (C/N), and the increment of monosaccharide, fructose and sucrose, in seeds explained that carbohydrate assimilation during seed filling was restricted by high temperature. Rapid increments of seed volume and weight were observed in the seeds of high seed filling temperature, but as soaking time increased the highest values were observed in the seeds of ambient seed filling temperature. The 100-seed weight and seed-coat ratio of soybean were closely related not only to the increment of soaking volume and weight, but also the increments of total dissolved solids (TDS) and electro conductivity (EC). Whereas protein content and C/N ratio showed less relationship with the soaking properties, but they had a positive correlation with TDS and EC. From the results, it was considered that high values of TDS and EC in the seeds of high temperature were mainly due to the incomplete conversion of assimilates into storage compounds. However, sugar content showed less influence on the soaking properties and the values of TDS and EC.

Measurement of and Changes in L-carnitine Levels in Developing Cucumber Cotyledon (오이 떡잎의 발달 과정에서 carnitine의 검출과 변화)

  • Cha, Hyeon Jeong;Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.421-427
    • /
    • 2019
  • Mobilization of storage lipids is critical for the germination of oil seeds, as they supply carbon and energy until photosynthesis commences in cotyledons. In this study, we determined the levels of plant carnitine and associated changes in these levels from seed germination to cotyledon senescence. We also examined changes in the content of unsaturated fatty acids throughout seedling development. Carnitine levels peaked on day 3 at 14.5 nM in cotyledons and decreased sharply to 7.2 nM on day 4. On development day 3 carnitine levels were maintained at around 3 nM until day 7. The unsaturated fatty acid content dropped by half at the same time as carnitine peaked (day-3), and storage lipids were almost depleted by day 5. Thereafter, carnitine was hardly detected until the second stage of cotyledon senescence, at which stage the carnitine content was 6.8 nM, similar to that on day 4 at the time of fatty acid depletion in the cotyledons. Unsaturated fatty acids levels remained constant in green cotyledons but slightly increased in the senescing cotyledons. The latter can be explained by intracellular breakdown of membrane lipids. This is the first such discovery in developing cotyledons and may offer clues regarding other roles of the acetyl unit transport system in plants. The expression of BOU was closely associated with carnitine metabolism during seed germination and cotyledon development. The results provide support for the possibility of carbon re-routing during the glyoxylate cycle in the supply of energy for early germination and development.