DOI QR코드

DOI QR Code

Influence of Seed-filling Temperature on the Seed Quality and Water Soaking Properties of Soybean

등숙온도가 콩의 품질 및 수분흡수 특성에 미치는 영향

  • 정건호 (농촌진흥청 국립식량과학원) ;
  • 권영업 (농촌진흥청 국립식량과학원) ;
  • 이재은 (농촌진흥청 국립식량과학원) ;
  • 김율호 (농촌진흥청 국립식량과학원) ;
  • 김대욱 (농촌진흥청 국립식량과학원) ;
  • 손범영 (농촌진흥청 국립식량과학원) ;
  • 김정태 (농촌진흥청 국립식량과학원) ;
  • 이진석 (농촌진흥청 국립식량과학원) ;
  • 신성휴 (농촌진흥청 국립식량과학원) ;
  • 백성범 (농촌진흥청 국립식량과학원) ;
  • 이병무 (동국대학교 바이오시스템대학 생명과학과) ;
  • 정일민 (건국대학교 생명환경과학대학 응용생물과학과) ;
  • 김선림 (농촌진흥청 국립식량과학원)
  • Received : 2013.06.24
  • Accepted : 2013.08.12
  • Published : 2013.09.30

Abstract

Korean soybean varieties, 'Seonyu' and 'Hwangkeum' were planted in 2012, and three temperature gradient, Tc($19.8^{\circ}C$, ambient temperatured), $Tc+1.7^{\circ}C$, and $Tc+2.5^{\circ}C$, were artificially created by controlling the green house system during seed filling period. Mature seeds that developed under these conditions were analyzed for variances in physicochemical properties. The 100-seed weight and seed-coat ratio of soybean were decreased, but small seed rate was increased by high temperature during seed filling period. Protein content was increased, but oil content was decreased significantly with increasing the seed filling temperature. The decrement of carbon to nitrogen ratio (C/N), and the increment of monosaccharide, fructose and sucrose, in seeds explained that carbohydrate assimilation during seed filling was restricted by high temperature. Rapid increments of seed volume and weight were observed in the seeds of high seed filling temperature, but as soaking time increased the highest values were observed in the seeds of ambient seed filling temperature. The 100-seed weight and seed-coat ratio of soybean were closely related not only to the increment of soaking volume and weight, but also the increments of total dissolved solids (TDS) and electro conductivity (EC). Whereas protein content and C/N ratio showed less relationship with the soaking properties, but they had a positive correlation with TDS and EC. From the results, it was considered that high values of TDS and EC in the seeds of high temperature were mainly due to the incomplete conversion of assimilates into storage compounds. However, sugar content showed less influence on the soaking properties and the values of TDS and EC.

콩의 수량은 건물생산성에 비해 고온에 민감하게 반응하는 하는 형질로 알려져 있다. 따라서 본 연구는 등숙기 고온이 종실의 발달, 품질특성 및 수분흡수특성에 미치는 영향을 검토하기 위해 수행하였으며 그 결과를 요약하면 다음과 같다. 1. 등숙온도가 높을수록 백립중은 감소되었는데, 황금콩은 선유콩에 비해 감소폭이 컸고, 등숙기 지속적인 고온은 종실비대를 억제시켜 소립종의 비율이 증가될 뿐만 아니라 종피율을 감소시키는 것으로 나타났다. 2. 등숙온도가 높을수록 지방 함량 및 C/N율이 감소되고, 단백질 및 총당 함량이 증가되었으나 당의 조성으로 볼 때 단당류와 이당류는 증가되고 올리고당류는 오히려 감소되는 것으로 나타나 고온은 동화물질의 축적을 억제시키는 것으로 판단되었다. 3. 고온에서 등숙된 콩은 침지초기에 부피 및 무게의 증가가 비교적 빠르게 이루어졌으나 침지시간이 경과됨에 따라 대조구에 비해 부피 및 무게증가율이 모두 낮게 나타났고, 황금콩은 선유콩에 비해 침지에 따른 부피증가율 및 무게증가율이 상대적으로 낮았다. 4. 콩의 백립중과 종피율은 침지에 따른 종실의 부피 및 무게증가율뿐만 아니라 용출액의 TDS와 EC에 영향을 미치는 주요 형질로 판단되었고, 단백질 함량과 C/N율은 TDS 및 EC와 유의한 상관을 보였으나, 당 함량은 부피증가율과 무게증가율뿐만 아니라 TDS 및 EC와 상관이 인정되지 않았다. 5. 따라서 등숙온도가 높을수록 종실에 동화물질의 축적이 불완전하게 이루어져 침지에 따른 가용성 고형물의 용출량이 많아지고, 결과적으로 TDS 및 EC가 높아지는 것으로 판단되었다.

Keywords

References

  1. Association of Official Seed Analysts. 2002. Seed Vigor Testing Handbook.
  2. Custodio, R. P. T., T. Shiraiwa, K. Homma, E. Kumagai, and R. Sameshima. 2012. The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber. Field Crops Research. 131 : 26-31. https://doi.org/10.1016/j.fcr.2012.02.006
  3. Duthion, C., and A. Pigeaire. 1991. Seed Lengths corresponding to the final stage in seed abortion of three grain Legumes. Crop Sci., 31 : 1579-1583. https://doi.org/10.2135/cropsci1991.0011183X003100060040x
  4. Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci., 36 : 1615-1619. https://doi.org/10.2135/cropsci1996.0011183X003600060034x
  5. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van Der Linden, X. Dai, K. Maskell, and C. A. Johnson. 2001. Climate Change 2001: The Scientific Basis. Report of the IPCC. Cambridge, UK: Cambridge University Press.
  6. Howell, R. W. and J. L. Cartter. 1958. Physiological factors affecting composition of soybeans: ii. Response of oil and other constituents of soybeans to temperature under controlled conditions. Agron. J. 50 : 664-667. https://doi.org/10.2134/agronj1958.00021962005000110007x
  7. Huxley, P. A., R. J. Summerfied, and P. Hughes. 1976. Growth and development of soybean CV-TK5 as affected by tropical day lengths, day/night temperatures and nitrogen nutrition. Ann. Apply. Biol., 82 : 117-133. https://doi.org/10.1111/j.1744-7348.1976.tb01679.x
  8. Hsu, K. H., C. J. Kim, and L. A. Wilson. 1983. Factors affecting water uptake of soybean during soaking. Cereal Chemistry. 60(3) : 208-211.
  9. Jung, G. H., J. E. Lee, Y. H. Kim, D. W. Kim, T. Y. Hwang, K. S. Lee, B. M. Lee, H. S. Kim, Y. U. Kwon, and S. L. Kim. 2012. Effect of planting date, temperature on plant growth, isoflavone content, and fatty acid composition of soybean. Korean J. Crop Sci. 57(4) : 373-383. https://doi.org/10.7740/kjcs.2012.57.4.373
  10. Kang, K. K., D. B. Lee, and Y. E. Na. 2011. RDA Interrobang 17. www.rda.go.kr.
  11. Lozovaya V. V., A. V. Lygin, A. V. Ulanov, R. L. Nelson, J. Dayde, and J. M. Widhohn. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45 : 1934-1940. https://doi.org/10.2135/cropsci2004.0567
  12. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005. The effect of temperature during the reproductive period on development of reproductive organs and the occurrence of delayed stem senescence in soybean. Jpn. J. Crop Sci. 74 : 339-343. https://doi.org/10.1626/jcs.74.339
  13. Munier-Jolain, N. G. and B. Ney. 1998. Seed growth rate in grain legumes II. Seed growth rate depends on cotyledon cell number. J. Exp. Bot. 49 : 1971-1976. https://doi.org/10.1093/jxb/49.329.1971
  14. Panobianco, M., R. D. Vieira, F. C. Krzyzanowski, and J. B. Francaneto. 1999. Electrical conductivity of soybean seed and correlation with seed coat lignin content. Seed Science and Technology. 27(3) : 945-949.
  15. Saio, K. 1976. Soybeans resistant to water absorption. Cereal. Foods World. 21 : 168-173.
  16. Sionit, N., B. R. Strain, and E. P. Flint. 1987. Interaction of temperature and $CO_2$ enrichment on soybean: Growth and dry matter partitioning. Can. J. Plant Sci. 67 : 59-67. https://doi.org/10.4141/cjps87-007
  17. Solomon, S., D. Qin, M. Manning, Z. Chen, M, Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. 2007. Technical summary. in Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth annual report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. pp. 19-840.
  18. Spears J. F., D. M. Tekrony, and D. B. Egli. 1997. Temperature during seed filling and soybean seed germination and vigour. Seed Sci. Technol. 25 : 233-244.
  19. Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo-Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed germination and transcript abundance. Crop Sci. 43 : 1548-1557. https://doi.org/10.2135/cropsci2003.1548
  20. Thuzar, M, A. B. Puteh, N. A. P. Abdullah, M. B. Lassim, and K. Jusoff. 2010. The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) Merrill.]. J. Agric. Sci. 2(1) : 172-179.
  21. Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, and K. Okubo. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43 : 1184-1192. https://doi.org/10.1021/jf00053a012
  22. Wikipedia. 2013. Total dissolved solids. http://en.wikipedia.org/wiki/Total_dissolved_solids.
  23. Wolf, R. B., J. F. Canvins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents; oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 59 : 230-232. https://doi.org/10.1007/BF02582182
  24. Woodstock, L. W. 1988. Seed imbibition: A critical period for successful germination. Seed Technol. 12 : 1-15.
  25. Zheng, S., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5(3) : 215-218. https://doi.org/10.1626/pps.5.215

Cited by

  1. Effects of Immersion Temperatures and Times on Chestnut Fruit and Mortality of the Chestnut Weevil, Curculio sikkimensis Heller vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.09.0.026