• Title/Summary/Keyword: carbon fibers-reinforced composites

Search Result 154, Processing Time 0.038 seconds

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Effect of Plasma Treatment on Mechanical Properties of Carbon Fibers-reinforced Composites (플라즈마 처리가 탄소섬유강화 복합재료의 기계적특성에 미치는 영향)

  • Oh, Jin-Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.80-83
    • /
    • 2005
  • In this work, effects of oxygen plasma on surface characteristics of carbon fibers were investigated in mechanical properties interfacial of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid/base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied in and critical stress intensity factor ($K_{IC}$) and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, the $O_{lS}/C_{lS}$ ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including $K_{IC}$ and $G_{IIC}$ had been improved in the oxygen plasma on fibers. These results could be explained that the oxygen plasma was resulted in the increase of the adhesion of between fibers and matrix in a composite system.

  • PDF

Influence of Oxygen Plasma Treatment on Impact Behaviors of Carbon Fibers-reinforced Composites (산소 플라즈마 처리가 탄소섬유강화 복합재료의 충격특성에 미치는 영향)

  • Oh, Jin-Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.23-26
    • /
    • 2005
  • In this work, effects of oxygen plasma on surfc1ce characteristics of carbon fibers were investigated in impact strength of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid/base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied by impact strength measurements. As experimental results, the $O_{IS}/C_{IS}$ ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including impact strength had been improved by the oxygen plasma on fibers. These results could be explained that the oxygen plasma resulted in the increase of the adhesion of between fibers and matrix in a composite system.

  • PDF

Mechanical Interfacial Properties of Anodically Oxidized Carbon Fibers-reinforced Composites (양극산화 처리된 탄소섬유 강화 복합재료의 기계적 계면물성)

  • Park, Soo-Jin;Oh, Jin-Seok;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.188-191
    • /
    • 2003
  • In this wort. the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers is investigated in terms of surface and mechanical interfacial properties of the composites. As a result, the acidity of carbon fiber surfaces is increased, due to the development of oxygen functional groups in the presence of anodic oxidation. Also. it is found that the critical stress intensity factor ($K_{IC}$) is improved in the oxidized fibers-reinforced composites. which can be attributed to the good wettability between fibers and epoxy resin matrix.

  • PDF

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites for Train Body (철도차량용 폐 복합소재에서의 탄소섬유 회수)

  • Lee, Suk-Ho;Lee, Cheul-Kyu;Kim, Yong-Ki;Kim, Jung-Seok;Ju, Chang-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.406-415
    • /
    • 2008
  • Recently, the amount of thermosetting plastic wastes have increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy composites, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that recovers carbon fibers from carbon fiber reinforced epoxy composites for train body was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

  • PDF

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Studies on ILSS and Acoustic Emission Properties of Carbon-Carbon Composites

  • Park, Soo-Jin
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.60-63
    • /
    • 2000
  • In this work, the carbon fibers-reinforced carbon matrix composites made with different carbon char yields of phenolic resin matrix have been characterized by mechanical flexural tests for acoustic emission properties. The composites had been fabricated in the form of two-dimensional polyacrylonitrile based carbon fibers during the carbonization process. It was found that the composites made with the carbon char yield-rich of resin matrix result in better mechanical interfacial properties, i.e., the interlaminar shear strength (ILSS) of the composites. The data obtained from the acoustic emission monitored appeared to show that the composites made with carbon char yield-rich were also more ductile. From the acoustic emission results, the primary composite failure was largely depended on the debonding at interfaces between fibers and matrix. The interlaminar shear strengths of the composites were correlated with the acoustic emission results.

  • PDF