• Title/Summary/Keyword: carbon emissions

Search Result 1,284, Processing Time 0.033 seconds

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.

Study on Location Decisions for Cloud Transportation System Rental Station (이동수요 대응형 클라우드 교통시스템 공유차량 대여소 입지선정)

  • Shin, Min-Seong;Bae, Sang-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Recently, traffic congestion has become serious due to increase of private car usages. Carsharing or other innovative public transportation systems were developed to alleviate traffic congestion and carbon emissions. These measures can make the traffic environment more comfortable, and efficient. Cloud Transportation System (CTS) is a recent carsharing model. User can rent an electronic vehicles with various traffic information through the CTS. In this study, a concept, vision and scenarios of CTS are introduced. And, authors analyzed the location of CTS rental stations and estimated CTS demands. Firstly, we analyze the number of the population, employees, students and traffic volume in study areas. Secondly, the frequency and utilization time are examined. Demand for CTS in each traffic zone was estimated. Lastly, the CTS rental station location is determined based on the analyzed data of the study areas. Evaluation standard of the determined location includes accessibility and density of population. And, the number of vehicles and that of parking zone at the rental station are estimated. The result suggests that Haewoondae Square parking lot would be assigned 11 vehicles and 14.23 parking spaces and that Dongbac parking lot be assigned 7.9 vehicles and 10.29 parking spaces. Further study requires additional real-time data for CTS to increase accuracy of the demand estimation. And network design would be developed for redistribution of vehicles.

A Study on Transient Operation Characteristics of 30kW Scale CVCF Inverter based Micro-grid (30kW급 CVCF 인버터 기반 Micro-grid의 구현 및 과도상태 운용특성에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.18-25
    • /
    • 2019
  • Recently, micro-grids based on a CVCF inverter have been replacing diesel generators to reduce CO2 emissions in island areas with the increase of renewable energy sources. Stable operation methods are also being researched. These micro-grids may cause energy sinking if the total output of renewable energy sources is larger than the total customer loads. In the case of energy sinking, the voltage of a CVCF battery could rapidly increase according to the condition of SOC, and blackout could occur in the micro-grid due to the operation of a protection device in a CVCF inverter. Therefore, this paper analyzes the operation characteristics of a CVCF-inverter-based micro-grid when energy sinking occurs and proposes a transient operation strategy to prevent shut-down of the CVCF inverter. A test device of a 30-kW CVCF-inverter-based micro-grid was implemented, and the transient operation characteristics for the energy sinking phenomenon are presented. The simulation results confirm that blackout can be properly prevented according to the conditions of SOC and voltage in a CVCF battery.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

Flexible Unit Floor Plan of Off-Site Construction Housing Considering Long-Lasting Housing Certification System (장수명주택 인증을 고려한 OSC공법 주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun;Roh, Jeong-Yeol;Kwon, Soo-Hye;Kim, Seung-Mo
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.103-117
    • /
    • 2021
  • With the current rapid changes in population and technology, the long-lastig housing certification system is a means of prolonging the physical and functional lifespan of a building. The certification requires differentiation between the structure and infill elements to allow for variability and ease of repairs. This works well with prefabricated houses so this study investigated the possibility of applying the long-lastig housing certification requirements to apartment construction using off-site construction (OSC) methods focused on the installation of bathrooms (plumbing and toilet) that differ from the traditional wet method. This study examined three different sized floor plans at 22 m2, 46 m2, and a combined one resulting in 69 m2. The larger 69 m2 plan utilized a removeable non-load bearing wall to increase flexibility in the layout of the floorplan. The apartments are constructed of steel reinforced concrete composite columns on a 9 m × 10.5 m grid with integrated slabs. The exterior and interior infill walls are all non-load bearing with some containing plumbing. This separation of the structure and infill walls can help meet some of the criteria in the long-lastig housing certification, particularly with the ease of repairs. Technologies that facilitate the replacement of infill elements that contain plumbing and other building services can benefit the nation by reducing carbon emissions and therefore tax incentives should be introduced to increase the adoption of the proposed construction methods.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

Analysis of Power System Stability by Deployment of Renewable Energy Resources (재생에너지원 보급에 따른 전력계통 안정도 분석)

  • Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.633-642
    • /
    • 2021
  • Growing demand for electricity, when combined with the need to limit carbon emissions, drives a huge increase in renewable energy industry. In the electric power system, electricity supply always needs to be balanced with electricity demand and network losses to maintain safe, dependable, and stable system operation. There are three broad challenges when it comes to a power system with a high penetration of renewable energy: transient stability, small signal stability, and frequency stability. Transient stability analyze the system response to disturbances such as the loss of generation, line-switching operations, faults, and sudden load changes in the first several seconds following the disturbance. Small signal stability refers to the system's ability to maintain synchronization between generators and steady voltages when it is subjected to small perturbations such as incremental changes in system load. Frequency stability refers to the ability of a power system to maintain steady frequency following a severe system upset resulting in significant imbalance between generation and load. In this paper, we discusses these stability using system simulation by renewable energy deployment plan, and also analyses the influence of the renewable energy sources to the grid stability.