• Title/Summary/Keyword: carbon dioxide content

Search Result 298, Processing Time 0.023 seconds

A Study on Reduced $CO_2$ Emission of Concrete Structures (콘크리트구조물의 이산화탄소배출 저감 기법에 관한 연구)

  • Kim, Ki-Hwan;Song, Ha-Won;Byun, Keun-Ju
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.897-900
    • /
    • 2006
  • This study concerned the quantification of environmental aggressiveness of concrete structure building up and applied to design of concrete structure. Only the content of carbon dioxide evacuated in the process of fabricating concrete structure was taken as an environmental load and various parameters, for example, material production, transportation, building-up, destruction and reuse were considered. Also, the life span of a concrete structure was taken into account in evaluating the carbon dioxide evolution. Consequently a single equation for the environmental load was obtained, which were subsequently used to assess the effect of high strength/durable concrete structures.

  • PDF

Adsorption of Carbon Dioxide using Pelletized AC with Amine impregnation (아민 함침 입자상 활성탄의 특성 분석 및 이산화탄소 흡착능 평가연구)

  • Lim, Yun-Hui;Jo, Young-Min;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • This study attempts to capture the low level carbon dioxide from indoor spaces using a granular activated carbon (WSC-470) which was modified with primary monoethanolamine. Adsorption capacity of the prepared adsorbents was evaluated for pure $CO_2$ flow and 3000 ppm as a function of MEA concentration and solvents such as distilled water, ethanol and methanol. The AC based adsorbents then were characterized in terms of pore structure by BET and chemical functionalities by XPS. While high concentration of MEA reduced specific surface area, porosity and micro pores, nitrogen content which can enhance the surface basicity was increased. The maximum adsorption capacity decreased comparing to the initial AC pellets, whilst the potential of selective adsorption amount at low level $CO_2$ was increased at 45% (0.73 mmol/g).

Evaluation of the Removal Performance of Nitrogen Oxides of Foam Composites Using Activated Carbon and Titanium Dioxide (활성탄소와 이산화 타이타늄을 활용한 폼 복합체의 질소산화물의 제거 성능 평가)

  • Choi, Hyun-Chul;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.120-127
    • /
    • 2022
  • Nitrogen oxide(NOx) is a major cause of air pollution, exists in the form of nitrogen monoxide and nitrogen dioxide, and is harmful to the human body. Recently, a number of studies to reduce NOx in the atmosphere have been conducted, and these efforts have been the same in the field of construction materials. It is known that NOx can be efficiently removed by using a photocatalytic reaction. In this study, the NOx removal performance of the foam composite using activated carbon(AC) and titanium dioxide(TiO2) was investigated. AC was used to enhance the photocatalytic reaction of TiO2 by increasing the internal specific surface area of the foam composite. In this study, foam composites were prepared using the substitution rate of AC as the main variable. The NOx removal performance of specimen was evaluated according to the test method presented in ISO-22197-1. The specific surface area of the foam composite showed a tendency to increase according to the AC content, but decreased at 15% or more. Also, when the AC substitution rate was 15%, the NOx removal efficiency was the highest.

Influence of Relative humidity on the CO2 Diffusion Coefficient in Concrete (콘크리트 중의 이산화탄소 확산계수에 대한 상대습도 영향 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Lee, Myung-Kun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.778-784
    • /
    • 2003
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion of carbon dioxide reached the steady-state within about five hours after exposure. The diffusion coefficient increases with the increase of water-cement ratio and decreases with the increase of relative humidity at the same water-cement ratio. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger than that of concrete or mortar. The experimental study of carbon dioxide diffusivity in this study will allow more realistic assessment of carbonation depth in concrete structures.

Characteristics of Direct Aqueous Carbonation Reaction Using Incinerated Ash and Industrial By-Products (소각재 및 산업부산물을 이용한 직접 수성탄산화 반응 특성)

  • Dong Kyoo Park;Seungman Han;Changsik Choi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • In order to better understand carbon dioxide recycling, the carbon dioxide capture characteristics of six different alkaline industrial by-products, including incineration ash, desulfurized gypsum, low-grade quicklime, and steelmaking slag were investigated using a laboratory-scale direct aqueous carbonation reactor. In addition to the dissolution characteristics of each sample, the main reaction structure was confirmed through thermogravimetric analysis before and after the reaction, and the reactive CaO content was also defined through thermogravimetric analysis. The carbon dioxide capture capacity and efficiency of quicklime were determined to be 473 g/kg and 86.9%, respectively, and desulfurized gypsum and incineration ash were also evaluated to be relatively high at 51.1 to 131.7 g/kg and 51.2 to 87.7%, respectively. On the other hand, the capture efficiency of steelmaking slag was found to be less than 10% due to the influence of the production and post-cooling conditions. Therefore, in order to apply the carbonation process to steelmaking slag, it is necessary to optimize the slag production conditions. Through this study, it was confirmed that the carbon dioxide capture characteristics of incineration ash, quicklime, and desulfurized gypsum are at levels suitable for carbonation processes. Furthermore, this study was able to secure basic data for resource development technology that utilize carbon dioxide conversion to produce calcium carbonate for construction materials.

Non-edible Vegetable Oils for Alternative Fuel in Compression Ignition Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2009
  • Non-edible vegetable oils instead of edible vegetable oils as a substitute for diesel fuel are getting a renewed attention because of global reduction of green house gases and concerns for long-term food and energy security. Out of various non-edible vegetable oils, karanja, mahua, linseed, rubber seed and cotton seed oils are selected in this study. A brief review of recent works related to the application of the above five vegetable oils and its derivatives in CI engines is presented. The production technologies of biodiesel based on non-edible vegetable oils are introduced. Problems in vegetable oil or biodiesel fuelled CI engine are included. In addition, future works related to spray characteristics of non-edible vegetable oil or biodiesel from it are discussed. The biodiesel fuel, irrespective of the feedstock used, results in a decrease in the emission of hydrocardon (HC), carbon monoxide (CO), particulate matter (PM) and sulphur dioxide ($SO_2$). It is also said to be carbon neutral as it contributes no net carbon dioxide to the atmosphere. Only oxides of nitrogen (NOx) are reported to increase which is due to oxygen content in the biodiesel fuel. The systematic assessment of spray char-acteristics of neat vegetable oils and its blends, neat biodiesel and its blends f3r use as diesel engine fuels is required.

  • PDF

Extractions of Surface-Active Substances from Defatted Rapeseed Meal (Brassica napus L.) by Supercritical Carbon Dioxide (초임계 CO2 유체 추출법을 이용한 탈지 유채박 중 표면활성물질 추출의 최적화)

  • Kim, Jeong-Won;Jeong, Yong-Seon;Gil, Na-Young;Lee, Eui-Seok;Lee, Yong-Hwa;Jang, Young-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.831-840
    • /
    • 2013
  • In this study, an attempt is being made to extract surface-active substances from defatted rapeseed cakes by supercritical carbon dioxide fluid. Independent variables for the extraction process, being formulated by D-optimal design, are pressure (150~350 bar), temperature ($33{\sim}65^{\circ}C$ and co-solvent (ethanol, 50~250 g). The dependent variables of the extraction yield, the content of neutral lipids, phospholipids and glycolipids in the extracts were analyzed upon the results through the response surface methodology. As for the extraction yield, it was found to increase with increasing independent variables, among which the co-solvent proved to be a major influencing parameter. Similar trends were found for the content of surface-active substances (i.e, phospholipids and glycolipids) in the extracts, except for the content of neutral lipids. Regression equations were suggested to coincide well with the results from the experiments. Extraction conditions are being optimized to maximize the extraction yields, the content of phospholipids, and glycolipids were 350 bar (pressure), $65^{\circ}C$ (temperature) and 228.55 g (co-solvent), respectively.

Changes of Organic Acids and Volatile Flavor Compounds in Kimchis Fermented with Different Ingredients (재료의 종류에 따른 김치의 유기산 및 휘발성 향미 성분의 변화)

  • Ryu, Jai-Yeon;Lee, Hye-Seong;Rhee, Hei-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.169-174
    • /
    • 1984
  • The changes of the content of organic acids, carbon dioxide, alcohols and carbonyl compounds of the various Kimchis which were made of cabbage with green onion, garlic, ginger or red pepper and fermented at $12^{\circ}C-16^{\circ}C$ were investigated. Nonvolatile organic acids identified were lactic, succinic, fumaric and malic acid. Volatile organic acids identified were acetic, formic, propionic, butyric, valeric, n-caproic and n-heptanoic acid. Carbonyl compounds identified were acetaldehyde and acetone. The content of lactic acid was increased with fermentation, and higher in Kimchis containing red pepper, garlic and green onion. The content of acetic acid was increased with fermentation, especially in Kimchi containing garlic. The content of carbon dioxide was higher in Kimchi containing garlic. Alcohols identified in all Kimchis was only ethanol. Carbonyl compounds had no direct effect on off-flavor of Kimchi.

  • PDF

Enhancement of $\beta$-D-Glucans Production by Agaricus blazei Murill by Nitrogen Supplementation

  • NA JEONG-GEOL;KIM HYUN-HAN;CHUN GIE-TAEK;CHANG YONG KEUN;LEE SANG JONG;CHUNG YEON HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1388-1391
    • /
    • 2005
  • Temporal changes of cell growth pattern and intracellular content of $\beta$-D-glucans were investigated with off-gas data in Agaricus blazei culture where glucose was intermittently fed. It was observed that the time point of carbon source depletion coincided with the point of sudden drop in the carbon dioxide evolution rate (CER), and that the sole supplementation of glucose was not enough to maintain active cell growth and glucan content. On the other hand, when yeast extract, a typical nitrogen source, was supplemented together with glucose when the CER suddenly dropped because of carbon source depletion, an active cell growth could be maintained until the end of the culture and the glucan content did not decrease with culture time, significantly enhancing glucan productivity.

Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites

  • Oh, Won-Chun;Na, Yu-Ri
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon/$TiO_2$ composite photocatalysts were thermally synthesized with different mixing ratios of anatase to phenol resin through an ethanol solvent dissolving method. The XRD patterns revealed that only anatase phase can be identified for Carbon/$TiO_2$ composites. The diffraction peaks of carbon were not observed, however, due to the low carbon content on the $TiO_2$ surfaces and the low crystallinity of amorphous carbon. The results of chemical elemental analyses of the Carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for carbon and Ti metal than that of any other elements. The BET surface area increases to the maximum value of $488\;m^2/g$ with the area depending on the amount of phenol resin. From the SEM images, small $TiO_2$ particles were homogeneously distributed to a composite cluster with the porosity of phenol resin-based carbon. From the photocatalytic results, the MB degradation should be attributed to the three kinds of synergetic effects, such as photocatalysis, adsorptivity, and electron transfer by light absorption between supporter $TiO_2$ and carbon.