DOI QR코드

DOI QR Code

Evaluation of the Removal Performance of Nitrogen Oxides of Foam Composites Using Activated Carbon and Titanium Dioxide

활성탄소와 이산화 타이타늄을 활용한 폼 복합체의 질소산화물의 제거 성능 평가

  • 최현철 (가천대학교 건축학부) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2022.10.07
  • Accepted : 2022.11.29
  • Published : 2022.12.31

Abstract

Nitrogen oxide(NOx) is a major cause of air pollution, exists in the form of nitrogen monoxide and nitrogen dioxide, and is harmful to the human body. Recently, a number of studies to reduce NOx in the atmosphere have been conducted, and these efforts have been the same in the field of construction materials. It is known that NOx can be efficiently removed by using a photocatalytic reaction. In this study, the NOx removal performance of the foam composite using activated carbon(AC) and titanium dioxide(TiO2) was investigated. AC was used to enhance the photocatalytic reaction of TiO2 by increasing the internal specific surface area of the foam composite. In this study, foam composites were prepared using the substitution rate of AC as the main variable. The NOx removal performance of specimen was evaluated according to the test method presented in ISO-22197-1. The specific surface area of the foam composite showed a tendency to increase according to the AC content, but decreased at 15% or more. Also, when the AC substitution rate was 15%, the NOx removal efficiency was the highest.

질소산화물(NOx)은 대기오염의 주요 인자로 일산화질소와 이산화질소의 형태로 존재하며 인체에 유해하다. 최근 대기 중 NOx를 제거하기 위한 많은 연구가 진행되고 있으며, 이러한 노력은 건설재료 분야에서도 동일하다. NOx는 광촉매 반응을 이용하여 효율적으로 제거할 수 있는 것으로 알려져 있다. 본 연구에서는 활성탄(AC)과 이산화타이타늄(TiO2)을 이용한 폼 복합재의 NOx 제거성능을 조사하였다. AC는 폼 복합체의 비표면적을 증가시켜 TiO2의 광촉매 반응 효율을 향상시켰다. 본 연구에서는 AC의 혼합율을 주요 변수로 하여 폼 복합체를 제조하였다. 제조된 시험체를 이용하여 ISO-22197-1에 제시된 시험방법에 따라 NOx 제거성능을 평가하였다. 폼 복합체의 비표면적은 AC 함량에 따라 증가하는 경향을 나타내었으나 15% 이상에서는 감소하였다. 또한 AC 혼입률이 15%일 때 NOx 제거 효율이 가장 높았다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA163949).

References

  1. Amor, F., Baudys, M., Racova, Z., Scheinherrova, L., Ingrisova, L., Hajek, P. (2022), Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete, Case Studies in Construction Materials, 16, e00965. https://doi.org/10.1016/j.cscm.2022.e00965
  2. Ballari, M. M., and Brouwers, H., (2013), Full scale demonstration of air-purifying pavement, Journal of Hazardous Materials, 254, 406-414. https://doi.org/10.1016/j.jhazmat.2013.02.012
  3. Cassar, L. (2004), Photocatalysis of cementitious materials: Clean buildings and clean air, MRS Bulletin 29(5), 328-331. https://doi.org/10.1557/mrs2004.99
  4. Cardenas, C., Tobon, J. I., Garcia, C., and Vila, J. (2012), Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles, Construction and Building Materials, 36, 820-825. https://doi.org/10.1016/j.conbuildmat.2012.06.017
  5. Chen, C., Tang, B., Cao, X., Gu, Fan., and Huang, Wei. (2021), Enhanced photocatalytic decomposition of NO on portland cement concrete pavement using nano-TiO2 suspension, Construction and Building Materials, 275, 122-135.
  6. Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., and Yu, Q. (2021), Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics, Chemical Engineering Journal, 420, 127588. https://doi.org/10.1016/j.cej.2020.127588
  7. Choi, J., Ki, T.-K., Cha, W.-H., and Han, M.-C. (2021), Effect of fineness of cement on the NOx removal performance of photocatalytic cement paste, Journal of the Architectural Institute of Korea, 37(8), 213-220. https://doi.org/10.5659/JAIK.2021.37.8.213
  8. Dylla, H., Hassan, M. M., Mohammad, L. N., Rupnow, T., and Wright, E. (2010), Evaluation of environmental effectiveness of titanium dioxide photocatalyst coating for concrete pavement, Transportation Research Record, 2164(1), 46-51. https://doi.org/10.3141/2164-06
  9. Folli, A., Pade, C., Hansen, T. B., De Marco, T., and Macphee, D. E. (2012), TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry, Cement and Concrete Research, 42(3), 539-548. https://doi.org/10.1016/j.cemconres.2011.12.001
  10. Gao, X., Liu, S., Zhang, Y., Luo, Z., Ni, M., and Cen, K. (2011), Adsorption and reduction of NO2 over activated carbon at low temperature, Fuel Processing Technology, 92(1), 139-146. https://doi.org/10.1016/j.fuproc.2010.09.017
  11. Guerrini, G. L. (2012), Photocatalytic performances in a city tunnel in Rome: NOx monitoring results, Construction and Building Materials, 27(1), 165-175. https://doi.org/10.1016/j.conbuildmat.2011.07.065
  12. Guo, G., Hu, Y., Jiang, S., and Wei, C. (2012), Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites, Journal of Hazardous Materials, 223-224, 39-45. https://doi.org/10.1016/j.jhazmat.2012.04.043
  13. Guo, M. -Z. Chen, J., and Poon, M. X. W. S. (2018), Pathways of conversion of nitrogen oxides by Nano TiO2 incorporated in cement-based materials, Building and Environment, 144, 412-418. https://doi.org/10.1016/j.buildenv.2018.08.056
  14. Hashimoto, K., Irie, H., and Fujishima, A. (2005), TiO2 Photocatalysis: A historical overview and future prospects, Japanese Journal of Applied Physics, 44(12), 8269-8285. https://doi.org/10.1143/JJAP.44.8269
  15. Horgnies, M., Dubois-Brugger, I., and Gartner, E. M. (2012), NOx De-pollution by Hardened Concrete and the Influence of Activated Charcoal Additions. Cement and Concrete Research 42(10), 1348-1355. https://doi.org/10.1016/j.cemconres.2012.06.007
  16. I.O.f. Standardization, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials - Part 1: Removal of nitric oxide, (2007), ISO, Geneva.
  17. Kleffmann, J., Becker, K. H., Lackhoff, M., and Wiesen, P. (1999), Heterogeneous conversion of NO2 on carbonaceous surfaces, Physical Chemistry Chemical Physics, 1(24), 5443-5450. https://doi.org/10.1039/a905545b
  18. Krou, N. J., Batonneau-Gener, I., Belin, T., Mignard, S., Horgnies, M., and Dubois-Brugger, I. (2013), Mechanisms of NOx entrapment into hydrated cement paste containing activated carbon - influences of the temperature and carbonation, Cement and Concrete Research, 53 , 51-58. https://doi.org/10.1016/j.cemconres.2013.06.006
  19. Lee, B. Y. (2018), Nitrogen oxides adsorbing capacity of high carbon fly ash containing cementitious materials, Journal of the Architectural Institute of Korea Structure & Construction, 34(3), 37-42. https://doi.org/10.5659/JAIK_SC.2018.34.3.37
  20. Lee, B. Y., Jayapalan, A. R., Bergin, M. H., and Kurtis, K. E. (2014), Photocatalytic cement exposed to nitrogen oxides: Effect of oxidation and binding. Cement and Concrete Research, 60, 30-36. https://doi.org/10.1016/j.cemconres.2014.03.003
  21. Lee, J., and Choi, Y. C. (2020), Pore structure characteristics of foam composite with active carbon, Materials, 13(18), 4038. https://doi.org/10.3390/ma13184038
  22. Leng, Z., and Yu, H. (2015), Novel method of coating titanium dioxide on to asphalt mixture based on the breath figure process for air-purifying purpose, Journal of Materials in Civil Engineering, 28(5), 04015188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001478
  23. Luna, M., Delgado, J. J., Romero, I., Montini, T., Almoraima Gil, M. L., Martinez-Lopez, J., Fornasiero, P., and Mosquera, M. J. (2022), Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design, Construction and Building Materials, 338, 127349. https://doi.org/10.1016/j.conbuildmat.2022.127349
  24. Lu, Z., Chen, G., Hao, W., Sun, G., and Li, Z. (2015), Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photo degradation of methylorange, RSC Advances 5(89), 72916-72922. https://doi.org/10.1039/C5RA11814J
  25. Lu, Z., Wang, Q., Yin, R., Chen, B., and Li, Z. (2016), A novel TiO2/foam cement composite with enhanced photo degradation of methyl blue, Construction and Building Materials, 129, 159-162. https://doi.org/10.1016/j.conbuildmat.2016.10.105
  26. Seo, D., and Yun, T. S. (2017), NOx removal rate of photocatalytic cementitious materials with TiO2 in wet condition, Building and Environment, 112, 233-240. https://doi.org/10.1016/j.buildenv.2016.11.037
  27. Faisal, S., and Patra, A. K., (2022), Investigation on photocatalytic and structural characteristics of normal concrete using TiO2 at ambient temperature, Materials Today: Proceedings, 68(1), 164-173. https://doi.org/10.1016/j.matpr.2022.08.425
  28. Yu, Q., and Brouwers, H. J. H. (2009), Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study, Applied Catalysis B Environmental, 92(3-4), 454-461. https://doi.org/10.1016/j.apcatb.2009.09.004
  29. Yu, K. -P., Lee, G. W. M., Huang, W. -M., Wu, C., and Yang, S. (2006), The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds, Atmospheric Environment, 40(2), 375-385. https://doi.org/10.1016/j.atmosenv.2005.09.045