• Title/Summary/Keyword: carbon density

Search Result 1,796, Processing Time 0.033 seconds

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Vulcanizate Structures of NR Compounds with Silica and Carbon Black Binary Filler Systems at Different Curing Temperatures

  • Kim, Il Jin;Kim, Donghyuk;Ahn, Byungkyu;Lee, Hyung Jae;Kim, Hak Joo;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.20-31
    • /
    • 2021
  • There is an increasing demand for the rolling resistance reduction in truck bus radial (TBR) tires in the tire industry. In TBR tires, natural rubber is used as a base polymer to prevent wear and satisfy required physical properties (cut and chip). A binary filler system (silica and carbon black) is used to balance the durability of the tire and rolling resistance performance. In this study, natural rubber (NR) compounds applied with a binary filler system were manufactured at different cure temperatures for vulcanizate structure analysis. The vulcanizate structures were categorized into carbon black bound rubber, silica silane rubber network, and chemical crosslink density by sulfur. Regardless of the cure temperature, the cross-link density per unit content of carbon black had a greater effect on the properties than silica due to affinity with NR. The relationship analysis between the mechanical, viscoelastic properties with vulcanizate structure could be a guideline for manufacturing practical TBR compounds.

Factors influencing the spatial distribution of soil organic carbon storage in South Korea

  • May Thi Tuyet Do;Min Ho Yeon;Young Hun Kim;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.167-167
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical component of soil health and is crucial in mitigating climate change by sequestering carbon from the atmosphere. Accurate estimation of SOC storage is essential for understanding SOC dynamics and developing effective soil management strategies. This study aimed to investigate the factors influencing the spatial distribution of SOC storage in South Korea, using bulk density (BD) prediction to estimate SOC stock. The study utilized data from 393 soil series collected from various land uses across South Korea established by Korea Rural Development Administration from 1968-1999. The samples were analyzed for soil properties such as soil texture, pH, and BD, and SOC stock was estimated using a predictive model based on BD. The average SOC stock in South Korea at 30 cm topsoil was 49.1 Mg/ha. The study results revealed that soil texture and land use were the most significant factors influencing the spatial distribution of SOC storage in South Korea. Forested areas had significantly higher SOC storage than other land use types. Climate variables such as temperature and precipitation had a relative influence on SOC storage. The findings of this study provide valuable insights into the factors influencing the spatial distribution of SOC storage in South Korea.

  • PDF

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics (탄소섬유강화 질화규소 세라믹스의 마찰마모 특성)

  • Park Yi-Hyun;Yoon Han-Ki;Kim Bu-Ahn;Park Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

Study on manufacturing mechanism of functional carbon membrane (기능성 카본막의 제조 Mechanism에 관한 연구)

  • Bae, Sang-Dae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2018
  • Separation technology combining adsorption and membrane is expected to be applied in many fields such as water treatment. In this fusion technique, a functional carbon membrane having a carbon whisker grown on the surface of the membrane was developed to inhibit membrane fouling, which is a problem in the membrane separation process. In this study, to elucidate the mechanism of manufacturing the functional carbon membrane, the membrane was pretreated with the polymer latex of each mixing ratio and the membrane was formed by the CVD (Chemical Vapor Deposition) method. The membrane was analyzed by scanning electron microscope (SEM), CHN analyzer (Elemental Analyzer), and X-ray diffraction (XRD). As a result, the diameter and density of carbon whiskers were higher in case of polyvinyl di-chloride (PVdC): polyvinyl chloride (PVC) = 4.5: 55. It seems possible to control the diameter and density of the carbon whiskers according to the hydrogen content of the polymer latex.

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors (고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조)

  • Sung, Ki-Wook;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite (화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화)

  • Kim, Hye-gyu;Ji, Wooseok;Kwon, Hyang Joo;Yoon, Sungtae;Kim, Jung-il
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.