DOI QR코드

DOI QR Code

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite

화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화

  • Kim, Hye-gyu (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Ji, Wooseok (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Kwon, Hyang Joo (Dacc Carbon, Co., Ltd.) ;
  • Yoon, Sungtae (Dacc Carbon, Co., Ltd.) ;
  • Kim, Jung-il (Dacc Carbon, Co., Ltd.)
  • Received : 2021.08.04
  • Accepted : 2021.09.01
  • Published : 2021.09.03

Abstract

In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.

본 논문에서는 화학기상침투법(CVI) 공정으로 제작되는 탄소/탄소 복합재의 밀도화 과정을 수치해석적으로 연구하였다. 이를 위해 선행 연구에서 개발된 전산유체역학 모델과 반응로 내 주요 화학 반응 모델을 연계한 다중물리 수치해석 모델을 이용하여, 섬유 프리폼의 밀도와 공극률 변화를 다양한 측면에서 분석하였다. 특히 프리폼 주변 기체 유동의 형태에 따른 밀도화 변화를 알기 위해, 특정 형상의 구조물을 프리폼 주변에 배치시켜 유동을 변화시킨 후 프리폼의 밀도화를 계산하였다. 총 4가지 다른 형태의 구조물로 해석한 결과 프리폼 주변의 유동 형태 및 속도 분포를 구조물 형상으로 제어할 수 있었으며, 프리폼의 평균 밀도를 높이거나 밀도 편차를 감소시키는 것이 가능함을 확인하였다. 본 연구에서는 실제 산업 현장에서 사용되는 반응로와 공정 조건을 모델로 이용하였다.

Keywords

References

  1. Tang, Z., Qu, D., Xiong, J., and Zou, Z., "Effects of Infiltration Conditions on the Densification Behavior of Carbon/Carbon Composites Prepared by a Directional-flow Thermal Gradient CVI Process," Carbon, Vol. 41, No. 14, 2003, pp. 2703-2710. https://doi.org/10.1016/S0008-6223(03)00374-9
  2. Zhao, J., Li, K., Li, H., and Wang, C., "The Influence of Thermal Gradient on Pyrocarbon Deposition in Carbon/Carbon Composites during the CVI Process," Carbon, Vol. 44, No. 4, 2006, pp. 786-791. https://doi.org/10.1016/j.carbon.2005.08.030
  3. Jeong, H.J., Park, H.D., Lee, J.D., and Park, J.O., "Densification of Carbon/Carbon Composites by Pulse Chemical Vapor Infiltration," Carbon, Vol. 34, No. 3, 1996, pp. 417-421. https://doi.org/10.1016/0008-6223(95)00208-1
  4. Tago, T., Kawase, M., Ikuta, Y., and Hashimoto, K., "Numerical Simulation of the Thermal-gradient Chemical Vapor Infiltration Process for Production of Fiber-reinforced Ceramic Composite," Chemical Engineeing Science, Vol. 56, No. 6, 2001, pp. 2161-2170. https://doi.org/10.1016/S0009-2509(00)00492-9
  5. Deck, C.P., Khalifa, H.E., Sammuli, B., and Back, C.A., "Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors," Science and Technology of Nuclear Installations, Vol. 2013, Article ID 127676, 2013.
  6. Ibrahim, J., and Paolucci, S., "The Modeling of Realistic Chemical Vapor Infiltration/Deposition Reactors," International Journal for Numerical Methods in Fluids, Vol. 64, 2010, pp. 473-516. https://doi.org/10.1002/fld.2155
  7. Kim, H., Ji, W., Kwon, H.J., Yoon, S., Kim, J., Bae, S., and Cho, N.C., "Full-scale Multi-physics Numerical Analysis of an Isothermal Chemical Vapor Infiltration Process for Manufacturing C/C Composites," Carbon, Vol. 172, 2021, pp. 174-188. https://doi.org/10.1016/j.carbon.2020.10.001
  8. Li, A., and Deutschmann, O., "Transient Modeling of Chemical Vapor Infiltration of Methane Using Multi-step Reaction and Deposition Models," Chemical Engineering Science, Vol. 62, 2007, pp. 4976-4982. https://doi.org/10.1016/j.ces.2007.01.069