• Title/Summary/Keyword: carbon composites

Search Result 2,116, Processing Time 0.026 seconds

Properties and Photocatalytic Activity of Pitch-binded ACF/TiO2Composites

  • Oh, Won-Chun;Jung, Ah-Reum
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.150-156
    • /
    • 2008
  • Pitch-binded activated carbon fiber(ACF)/$TiO_2$ composite photocatalysts were prepared by Carbon Tetra Chloride (CTC) solvent mixing method with different mixing ratios of anatase to ACF. The result of the textural surface properties demonstrated that there is a slight increase in the Brunauer, Emmett and Teller (BET) surface area of composites with an increase of the amount of ACF. The surfaces structure morphologies of the composites were observed using an Scanning Electron Microscope (SEM). In the XRD patterns for all ACF/$TiO_2$ composites, the diffraction peaks showed the formation of anatase crystallites. The EDX spectra showed the presence of C, O and Si with strong Ti peaks. Most of these samples were richer in carbon and major Ti metal than any other elements. From the photo-decomposition results, the excellent activity of the ACF/$TiO_2$ composites between c/$c_0$ for methylene blue and UV irradiation time could be attributed to both the effects of the photocatalysis of the supported $TiO_2$ and adsorptivity of activated carbon fiber and another carbon derived from pitch.

Electrical Conduction and Resistance Characteristics of Styrene Butadiene Rubber (SBR) Composites Containing Carbon Black (Styrene Butadiene Rubber (SBR)/ Carbon Black 복합체의 전기저항 및 전기전도 특성)

  • Kim, Do-Hyun;Lee, Jung-Hee;Sohn, Ho-Soung;Lee, Kyung-Won
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.246-254
    • /
    • 1998
  • In order to investigate the characteristics of resistance and conduction of vulcanized styrene butadiene rubber (SBR)/ carbon black (CB) composites, surface/ volume resistivity, point to point resistance, decay time, and electrical conduction experiments with four different kinds of non-conductive carbon black were measured. When about 50phr of carbon black were loaded in SBR, all resistivites suddenly decreased and critical region (Rc) was shown. Current densities of SBR/CB composites showed critical point (Pc) and increased with the electric fields. Electrical conduction mechanisms of SBR/CB composites could be considered as the ohmic conduction at low electric fields and the space charge limited conduction (SCLC) at high electric fields, respectively.

  • PDF

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

Effects of Carbon-coated SiC Whiskers on the Mechanical Properties of SiC Whisker Reinforced Silicon Nitride Ceramic Composite (SiC 휘스커 강화 질화규소 복합재료의 기계작 성질에 미치는 카본 코팅 SiC 휘스커의 영향)

  • 배인경;이영규;조원승;최상욱;장병국;임실묵
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1007-1015
    • /
    • 1999
  • The Si3N4 composites reinforced with carbon-coated SiC whiskers were fabricated by hot-pressing at 180$0^{\circ}C$ for 2 hours to examine the effects of carbon-coated whiskers on the mechanical properties of SiC whisker reinforced Si3N4 composites. The flexural strength of the Si3N4 composites and Si3N4 monolith respectively. The weak interfacial bond between carbon-coated SiC whiskers and Si3N4 matrix which enhances the crack deflection and whisker pull-out could contribute to the improvement of mechanical properties of the composites.

  • PDF

Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band (마이크로파에서의 카본 블랙/에폭시 복합재료의 유전율 모사)

  • Kim J.B.;Kim T.W.;Kim C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1 GHz\~18GHz$. The results show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency spectrums of dielectric constants and ac conductivities of composites show the good conformities with descriptions of the percolation theory. The carbon black concentration dependencies do not have conformities with the descriptions of percolation theory and there is no peculiar concentration like percolation threshold, on that concentration, the conductivity of composite jumps up. A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

  • PDF

Microscopic analysis of metal matrix composites containing carbon Nanomaterials

  • Daeyoung Kim;Hye Jung Chang;Hyunjoo Choi
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.4.1-4.10
    • /
    • 2020
  • Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.

A Study on the Impact Fracture Toughness of Epoxy Matrix Composites (에폭시기지 복합재료의 충격파괴인성에 관한 연구)

  • Kim, Jae-Dong;Jeon, Jin-Tak;Koh, Sung-Wi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries (리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-85
    • /
    • 2015
  • Silicon/carbon composites as anode materials for lithium-ion batteries were examined to find the cycle performance and capacity. Silicon/carbon composites were prepared by a two-step method, including the magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical behaviors of lithium ion batteries were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The improved electrochemical performance attributed to the fact that silicon/carbon composites suppress the volume expansion of the silicon particles and enhance the conductivity of silicon/carbon composites (30 ohm) compared to that of using the pure silicon (235 ohm). The anode electrode of silicon/carbon composites showed the high capacity approaching 1,348 mAh/g and the capacity retention ratio of 76% after 50 cycles.