DOI QR코드

DOI QR Code

Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries

리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성

  • Park, Ji Yong (Department of Chemical Engineering, Chungbuk national Univ.) ;
  • Jung, Min Zy (Department of Chemical Engineering, Chungbuk national Univ.) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk national Univ.)
  • Received : 2014.10.29
  • Accepted : 2014.11.20
  • Published : 2015.02.10

Abstract

Silicon/carbon composites as anode materials for lithium-ion batteries were examined to find the cycle performance and capacity. Silicon/carbon composites were prepared by a two-step method, including the magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical behaviors of lithium ion batteries were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The improved electrochemical performance attributed to the fact that silicon/carbon composites suppress the volume expansion of the silicon particles and enhance the conductivity of silicon/carbon composites (30 ohm) compared to that of using the pure silicon (235 ohm). The anode electrode of silicon/carbon composites showed the high capacity approaching 1,348 mAh/g and the capacity retention ratio of 76% after 50 cycles.

본 연구에서는 리튬이차전지의 음극활물질인 실리콘/탄소 복합소재를 제조하여 전기화학적 특성을 확인하였다. 실리콘/탄소 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. 실리콘/탄소를 음극으로 제조하여 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 분석하였다. 실리콘에 코팅된 탄소는 전기 전도도를 향상시켜 Rct값을 235 ohm (silicon)에서 30 ohm (실리콘/탄소)으로 낮추었고 리튬의 탈 삽입 시에 발생하는 실리콘의 팽창을 억제하여 전극을 안정화시키는 효과를 보여주었다. 실리콘/탄소 전극을 사용한 리튬이차전지는 1,348 mAh/g의 용량을 나타내었고 50사이클 동안 76%의 안정성을 보여주었다.

Keywords

References

  1. Y. Hwa, C. M. Park, and H. J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, J. Power Sources, 222, 129-134 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.060
  2. J. Wang, H. Zhao, J. He, C. Wang, and J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries, J. Power Sources, 196, 4811-4815 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
  3. Y. Yang, W. J. Peng, H. J. Guo, Z. X. Wang, X. H. Li, Y. Y. Zhou, and Y. J. Liu, Effects of modification on performance of natural graphite coated by $SiO_2$ for anode of lithium ion batteries, Trans. Nonferrous Met. Soc. China, 17, 1339-1342 (2007). https://doi.org/10.1016/S1003-6326(07)60273-8
  4. T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, and H. Q. Wu, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries, Electrochem. commun., 9, 886-890 (2007). https://doi.org/10.1016/j.elecom.2006.11.026
  5. S. H. Moon, W. J. Jin, and T. R. Kim, Performance of Graphite Electrode Modified with Carbon Nanofibers for Lithium Ion Secondary Battery, J. Ind. Eng. Chem., 11(4), 594-602 (2005).
  6. M. Zhang, X. Hou, J. Wang, M. Li, and X. Liu, Interweaved Si@C/CNTs&CNFs compsosites as anode materials for Li-ion batteries, J. Alloys Compd., 13 (2013).
  7. Y. Hwa, W.-S. Kim, B.-C. Yu, J.-H. Kim, S.-H. Hong, and H.-J. Sohn, Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li ion batteries, J. Power Sources, 252, 144-149 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.118
  8. G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, and H. K. Liu, Nanostructured Si-C composite anodes for lithium-ion batteries, Electrochem. commun., 6, 689-692 (2004). https://doi.org/10.1016/j.elecom.2004.05.010
  9. C. Du, M. Chen, L. Wang, and G. Yin, Covalently-functionaliizing synthesis of Si@C core-shell nanocomposites as high-capacity anode materials for lithium-ion batteries, J. Mater. Chem, 21, 15692 (2011). https://doi.org/10.1039/c1jm12368h
  10. H. C. Tao, L. Z. Fan, and X. Qu, Facile synthesis of ordered Si@C nanorods as anode materials for Li ion batteries, Electrochim. Acta, 71, 194-200 (2012). https://doi.org/10.1016/j.electacta.2012.03.139
  11. T. Madhuri, I. Mark, L. S. Steven, S. W. Michael, and L. B. Sibani, Gold-coated porous silicon films as anodes ofr lithium ion batteries, J. Power Sources, 205, 426-432 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.058
  12. X. Y. Zhou, J. J. Tang, J. Yang, J. Xie, and L. L. Ma, Silicon@carbon holow core-shell heterostructures novel anode materials for lithium ion batteries, Electrochim. Acta, 87, 663-668 (2013). https://doi.org/10.1016/j.electacta.2012.10.008
  13. I. Hong, B. Scrosati, and F. Croce, Mesoporous, Si/C composite anode for Li battery obtained by 'magnesium-thermal' reduction process, Solid State Ionics, 232, 24-28 (2013). https://doi.org/10.1016/j.ssi.2012.11.003
  14. M. Guo, X. Zou, H. Ren, F. Muhammad, C. Huang, S. Qiu, and G. Zhu, Fabrication of high surface area mesoporous silicon via magnesiothermic reduction for drug delivery, Microporous Mesoporous Mater., 142(1), 194-201 (2011). https://doi.org/10.1016/j.micromeso.2010.11.036
  15. J. Kaspar, M. Graczyk-Zajac, S. Lauterbach, H. Kleebe, and R. Riedel, Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties, J. Power Sources, 269, 164-172 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.089
  16. M. Su, Z. Wang, H. Guo, X. Li, and W. Xiao, Enhanced cycling performance of Si/C composite prepared by spray-drying as anode for Li-ion batteries, Powder Technol., 249, 105-109 (2013). https://doi.org/10.1016/j.powtec.2013.07.021
  17. M. S. Wang and L. Z. Fan, Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries, J. Power Sources, 244, 570-574 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.151
  18. M. S. Wang, L. Z. Fan, M. Huang, J. Li, and X. Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries, J. Power Sources, 219, 29-35 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.102
  19. S. Wang, Y. Matsumura, and T. Maeda, A model of the interactions between disordered carbon and lithium, Synthetic Met., 71, 1759-1760 (1995). https://doi.org/10.1016/0379-6779(94)03039-9

Cited by

  1. Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1056
  2. CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 vol.54, pp.1, 2015, https://doi.org/10.9713/kcer.2016.54.1.16
  3. 리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성 vol.24, pp.1, 2017, https://doi.org/10.4150/kpmi.2017.24.1.24
  4. 석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성 vol.28, pp.5, 2017, https://doi.org/10.14478/ace.2017.1062
  5. Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.303