• Title/Summary/Keyword: carbon capture and storage(CCS)

Search Result 114, Processing Time 0.025 seconds

Thermal-Hydraulic Analysis of Pipeline Transport System for Marine Geological Storage of Carbon Dioxide (이산화탄소 해양지중저장 처리를 위한 파이프라인 수송시스템의 열-유동 해석)

  • Huh, Cheol;Kang, Seong-Gil;Hong, Sup;Choi, Jong-Su;Baek, Jong-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.88-94
    • /
    • 2008
  • The concentration of atmospheric carbon dioxide (CO2), which is one of the major greenhouse gases, continues to rise with the increase in fossil fuel consumption. In order to mitigate global warming the amount of CO2 discharge to the atmosphere must be reduced. Carbon dioxide capture and storage (CCS) technology is now regarded as one of the most promising options. To complete the carbon cycle in a CCS system, a huge amount of captured CO2 from major point sources such as power plantsshould be transported for storage into the marine or ground geological structures. Since 2005, we have developed technologies for marine geological storage of CO2,including possible storage site surveys and basic design of CO2 transport and storage process. In this paper, the design parameters which will be useful to construct on-shore and off-shore CO2 transport systems are deduced and analyzed. To carry out this parametric study, we suggested variations in thedesign parameters such as flow rate, diameter, temperature and pressure, based on a hypothetical scenario. We also studied the fluid flow behavior and thermal characteristics in a pipeline transport system.

Behavior Analysis of Discharged DIC Concentrated Seawater through Towed Pipe Injection from Ship

  • Kwon, Seong-Min;Kim, Kang-Min;Song, Hyeon-Woo;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • Climate change is a very vital issue that can be no longer avoided. Korea has been a top-level country Iin dealing with carbon dioxide emissions since 1960. Many studies have been conducted to suppress or eliminate carbon dioxide emissions, which account for a large portion of greenhouse gases. Carbon Capture and Storage (CCS), the most practical method of them, plays a significant role. However, these methods have the disadvantage of the limits of geographical distribution and high possibility of re-emission into the atmosphere. Recently, ocean storage has been studied using Accelerated Weathering of Limestone (AWL), a technique for storing carbon dioxide in the ocean as an alternative to CCS, an underground storage. AWL is a method of converting carbon dioxide into concentrated water in the form of bicarbonate ion and discharging it to the ocean to dilute and store it. It does not cause re-emission to the atmosphere, and the discharged concentrated water increases the alkalinity of the ocean to prevent marine acidification. The objective of this study was to understand the behavior of DIC (Dissolved Inorganic Carbon) including carbon dioxide during the ocean discharge of bicarbonate ion concentrated water in AWL method. This study area was set near Ulleung-do where sufficient water depth and operational efficiency were secured. CORMIX model was used to calculate the material diffusion by submerged discharge using ship.

Current status of CCU technology development (CCU 기술개발 국내외 기술동향)

  • Sim, Jae-Gu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.517-523
    • /
    • 2016
  • South Korea is the 8th biggest greenhouse gas emitter in the world due to its phenomenal economic growth based on manufacturing, and it is ranked first among OECD members for the rate of increase in emissions. Thus, the Korea government has voluntarily presented a reduction target and demonstrated global leadership. For the reduction of nation's GHG emission, importance of CCU(Carbon Capture and Utilization) along with CCS(Carbon Capture and Storage) technology development is increased. CCU technology is $CO_2$ utilization technology for the usage of $CO_2$ from flue gas and it can create a new economic value while reducing $CO_2$ emission. Therefore, with continued technology development, the number of application of CCU technology is increasing globally.

A Study on Implementation and Deriving Future Tasks of 「The Korean National CCS Master Action Plan」 (「국가 CCS 종합추진계획」 이행점검 및 개선과제 도출 연구)

  • Cho, GaBi;Cho, Hayoung;Park, Noeon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2016
  • Global warming caused by greenhouse gases is one of the foremost challenges in the international community. As an alternative to solve this problem, the importance of CCS (Carbon Capture and Storage) technology is increasing. However, due to the delay of European financial crisis recovery, some large-scale CCS projects were postponed. In turn, large-scale CCS projects in South Korea have not been launched as originally planned. Given these situations, it is important to review the latest R&D activities related to CCS in South Korea, and then adjust relevant national policy accordingly. The purpose of this study is to identify policy issues for the effective promotion of CCS technology in South Korea. Following the analysis of recent global trend on CCS policy, we evaluated the results and achievements from national CCS projects, which had been listed under the "Korean National CCS Master Action Plan (2010)". Especially, we tried to review the attainability for the original goal of each project. Through the present study, we identified the current status of CCS technology in South Korea and suggested efficient ways to be taken in order to increase efficiency in implementing national CCS policy in the future.

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Development of Pilot Injection Plant for CO2 Underground Storage (이산화탄소 지중저장용 파일럿 주입플랜트 개발)

  • Yoon, Seok-Ho;Kim, Young;Lee, Jun-Ho;Lee, Kong-Hoon
    • Plant Journal
    • /
    • v.9 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • The worldwide issue of greenhouse gas reduction has recently drawn great attention to carbon capture and storage(CCS). In this study, we developed a 10,000 ton/year pilot injection plant for geological storage of carbon dioxide. Major components of the pilot plant include a pressure pump, a booster pump, and an inline heater to bring liquid carbon dioxide into its supercritical state. The test results show that the pilot plant readily achieves the injection pressure and temperature, showing satisfactory control performance. The overall power consumption is 2,000 ~ 2,500 W, more than 75% of which consumed by the pressure pump. This study will facilitate varied research on greenhouse gas reduction as the only domestically developed system for geological injection.

  • PDF

Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants (가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석)

  • Lee, Young-Duk;Lee, Sang-Min;Park, Jun-Hong;Yu, Sang-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

A risk assessment of $CO_2$ geological storage for domestic application (이산화탄소 지중저장의 국내적용을 위한 위해성 평가 방안)

  • Lee, Kang-Ryel;Lee, Dae-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.1-220.1
    • /
    • 2011
  • In recent years, the importance of Carbon Capture and Storage (hereafter CCS) is growing bigger and bigger. The development and commercialization of CCS technology are concerned for reducing carbon dioxide($CO_2$) emissions. For the most studies, the technology of $CO_2$ storage is known as the geological storage, ocean sequestration, mineral carbonation, industrial utilization, and so on. The geological storage is adjudged the most reasonable technology from economic and environmental aspects. Generally, the $CO_2$ geological storage is comprised of compression - transportation - drilling/injection - storage/management process. The critical problem is a leakage of $CO_2$ in all process. For resolving a leakage problem, it is necessary to predict and build a monitoring system. Those systems are proved safety of a leakage and received positive social perceptions of $CO_2$ geological storage. For those reasons, a risk assessment of $CO_2$ geological storage is required. A risk assessment is an estimated process of the possible effects when spilling $CO_2$. Although numerous studies of risk assessment have studied, it is incomplete to evaluate a risk and disaster quantitatively. The risk assessment will be developed for domestic application and safe $CO_2$ geological storage considering characteristics of Korea.

  • PDF

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials (다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술)

  • Cho, Se Ho;Bai, Byong Chol;Yu, Hye-Ryeon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.343-347
    • /
    • 2011
  • Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.